Live-Virtual-Constructive
Interoperability
Techniques

Randy Saunders & Ed Powell
30 November 2018

Agenda

0800-0815
0815-0840
0840-0900
0900-1000
1000-1015
1015-1115
1115-1145
1145-1200

Introduction

LVC Integration — The Issues
DIS

HLA

break

TENA

Future Possibilities
Summary/Recommendations

Saunders
Powell
Powell

Saunders

Powell
Saunders

APL

Introduction

= What is Live-Virtual-Constructive (LVC) Interoperability?
= Why should you want it?
= What’s the problem?

APL

LVC Interoperability
Live/Range Live/Real World C?
e

Constructive

Forces Virtual Simulators

& Simulations

UNCLASSIFIED

Why is LVC Interoperability Important?

= Limitations on Live Opportunities
= High cost for a large force, both manpower and equipment.
= Joint operation requires more players, OOTW even more so.
= Environmental factors are beyond control.

» Limitations on Virtual Simulation
= High cost for a large force, both manpower and equipment.
= Joint operation requires more players, OOTW even more so.

= Verification and Validation efforts required to establish
confidence.

= Limitations on Constructive Simulation

= Verification and Validation efforts required to establish
confidence.

= Representation of human behavior is beyond the current state-
of-the-art in computer science. APL

" USJFCOM
The LVC Architecture Issue

m Current LVC environments are not inherently
interoperable.

High Level Architecture (HLA) and Distributed Interactive Simulation (DIS)
are most often used for integrating virtual and constructive assets,
Test & Training Enabling Architecture (TENA) is widely used in testing and
to integrate live assets into exercises/events.
Common Training Instrumentation Architecture (CTIA) promotes
comnonalilyamongiheUS Ammy’'s instrumented ranges and home

5 LVC - Integrated Architecture (LVC-IA) is next-generation Amy
mul-echelon, integrated, joint, training and mission rehearsal
environment

m Multiple protocols, gateways, and object models are
often used to bring an LVC Environment together.

Interoperability and efficiency issues arise when bringing disparate
protocols and entities together in a common operational environment.

Complexity, disconnects, duplication of effort, risk, and costs increase with
multiple architectures.

At least four communities agree; critical review needed to
develop way forward for efficient, effective interoperability.

UNCLASSIFIED

A Framework for Interoperability

= Technical

= Define an architecture (or set of integrated architectures) that can

support the coherent runtime exchange of information among
cooperating simulations

= Process

= Technical - Define a robust technical operations model that identifies
the time-sequenced set of activities and tasks necessary to achieve a
desired level of interoperability

= Business - Create an effective, efficient business operations model to
ensure the availability of supporting software/data infrastructure

= Standards

= Define opportunities for architecture, process, software, and data
standards to facilitate cooperative development

APL

Distributed Simulation Engineering
and Execution Process (DSEEP)

New SISO/IEEE-sponsored initiative to define a common systems engineering
approach to the development of distributed simulation environments (IEEE P1730)

Defines a standard systems engineering methodology for all distributed
simulation users

Includes architecture-specific views of the standard process

= DIS, HLA, TENA

Initially based on HLA FEDEP, but working group includes a very wide user base
= All affected architectures

» International participants
Multi-Architecture Overlay (DMAO) developed to address LVC concerns

Execute
Simulation
Environmen{
and Prepare
Outputs

Plan,
Integrate,
and Test

Develop
Simulation
Environment

Design
Simulation
Environment

Define

Simulation

Environment
Objectives

Simulation
Environmen{]

@

.
NSNS NS NN NN NN NN NN NN NN NN NN NN NN NN NN NN NS NN EEEEEEEEEEEEEEEEnnEnnnnnnnnnnnnnnnnnnl s s n N s RN R RS AR E SRR R R R R R

Corrective Actions / Iterative Development

DSEEP (Step 4 Expanded)

Simulation
Environment

Development List of
Simulation E ::dt'on c wa Simulation Selected
Environment gyisting XPI un' Member o&czp Iua Environment (existing) Member
Design Object a ode Requirements ~ Scenario(s) Members Designs
32 Models 3.3 Inerfaces 22 2.3 2.1 3.1 3.2
v
Object
)4 \ 4 \ 4 A 4 Model
Develop h 5452 >
Supporting Resources Object Model Simulation
4.1 Environment
YV VYV VY 5'“19;92?2";31
Establish Simulation e >
Environment Scenario Instancefs) 5.1 R
Other Data Agreements 4.2 g
Resources Dictionary v v vY v
Elements (C')\ll;;vgt %(522?) Modified/new Members 5.2 R
Model Moéels Implement Member >
v Designs 4.3 Supporting Databases 5.2 o
J
Implemented
)) Simulation
Object Implement Simulation Environment
Data Model Environment Infrastructure 5.2
Dictionaries Libraries Infrastructure 4.4] "

APL

Federation Engineering Agreements
Template (FEAT)

= SISO recently finalized a standardized XML template for
representing federation agreements.

= Existing agreements from a dozen large, multi-architecture
federations were examined and included in the schema.

= An initial tool for editing an agreements document in the standard
form has been produced and is available as open source at:
http://sourceforge.net/p/feateditor/

APL

Architectural Implications

= DSEEP encourages engineering in a loosely-coupled architecture

= The Design (3), Develop (4), and Integrate (5) steps can be done
in an iterative manner.

= Technical characteristics to examine

= Distributed architectures exploit additional computers while
using the network to reduce coupling

= Existing simulations can be reused or adapted to new scenarios
= Connections can bridge the differences between simulations

APL

Simulation Integration:
Live, Virtual, and Constructive (LVC)
What this means and why?

Dr. Edward T. Powell

epowell@tena-sda.org

Terms

e A “model” is a simplified mathematical representation of
a real-world object

e A selective re-creation of reality based on the creator’s objectives and

evaluations as to which aspects of reality are /importantto the purpose of
the model

e Two completely different models of a given system may both be right,
because they serve different objectives

e A "simulation” is a mechanism for evolving a model or
set of models over time

Model

Model

Objectives
Purpose
Evaldation Model Name
:
: Tifoe(Constant ,
_ Alroute Attributes || AAl9erithms
Abstraction glabase
Simplification
Variable Algorithm Algorithm
Attributes Parameters Paramete
Database

Models Interacting

e When Models interact with one another, they generally don’t
allow direct access to their attributes by other models

e They create a “public face”, consisting of that subset of their attributes they

Viode
Attribute
Database

allow other models to

read

e They have basic input and output functions, usually including logging
e They have an API to send and receive messages

Model A

Constant

Attributes || Al9erthms

Variable
Attributes

Algorithm
Parameters

Paramete
Database

Public Face

Input |1 Attributes

Output

—p Screen

API

Model B

Viode
Attribute
Database

Constant
Attributes

Algorithms

Variable
Attributes

Algorithm

Parameters

Algorithm
Paramete
Database

Input

Public Face
Attributes

Output

—p Screen

—>| Log

API

Types of Models in Military
Simulation

Sensor Models (Optical, Radar, IR, etc.)

Vehicle Movement Models (over land, air, sea, under sea)
Weapons Flyout Models

Weapons Effects Models

Command and Control Models

Human Behavior Models
OODA-Loop Models (observe, orient, decide, act)
Perceived Truth Models

Engineering-level System and Subsystem Models

Model of the Environment (land, sea, undersea, air, space)

Called “Synthetic Natural Environment”

Critical for doing /ntervisibility calculations (are two entities within line-of-
sight?) and detection calculations (did one entity detect another?)

Constructing a Simulation

e Creating a simulation requires the addition of:

e Simulation Engine to manage the advancement of time and inter-model
communication

e The addition of a model of the Environment

Model A Model B Model C Model D Environment

e The Environment is special — almost all models rely on
the environment model

Simulation Engines

e There are many simulation engines available for use
e Many different features beyond the required ones
e Many different mechanisms for advancing time

e Many add a “modeling framework” that constrains developers to develop
models in a certain way

e Examples

OneSAF

Flames
SPEEDES/WARP IV
Open Game World
Unreal

Delta3D

Many, many others

Simulation Systems Can Provide Many Services
Beyond the Basics, e.g., OneSAF

Mission Area Leader and Staff Training Leader and Staff MOUT Training | | Leader and Staff Mission Rehearsal
Applications System Composition System Composition System Composition
g""?s:;tiy:stf M [Standalone Analytic Simulation | [Stimulator for Virtual Simulations Test and Evaluation Support Other System
P System Composition System Composition System Composition Compositions e

OneSAF Product Layer

System | Knowledge Event Model Simulation | Technical | Simulation | Simulation C4l Analysis | Repository |Maintenance
Composer | Eng. Env. Planner Composer | Generator Manager Core Controller Adapter | & Review | Manager |Environment

OneSAF Component Layer

Military Monitor &

Scenario Control

Simulation | Simulation Unit Management “m
Scenario | Config. Tool | Models | & Control Tool
Environment Unit Environment| Federation Entity Fed.Mgmt. [Transiation Collector | Secur Tool
Environment | Composer Devel. Tool Models Tool Services | Annotator Defect
Database ID"“' Tool Tool
Generation | Behavior | _Collection oot modeling| Behavior |System Asset| Connect Vav
Environment | Composer qurlﬁ.gftbﬂ Tool Models | Mgmt.Tool | Services Tool
Loader Tool Models SW Install
Benchmark Env. Tool
Tool Models
Environment J§ Environment
Composition GUI Plan View Simulation
i Runtime Reasoning 3D Viewer i

System
OneSAF Component Support Layer

Compc;ser

Sim. Object
Runtime
Database

Services

Modeling
Services

System KA/KE Military B oniment Parametric & Simulation Solware
Composition A Scenario : Initialization Output e

Repository Repository Repository Repository Repository Repository Reposikory
OneSAF Repository Component Layer

Monitor Time Name Directory| | Messaging Coordinate | | Interchange

Services Services Services Services Services Services
Common Services Layer
Platform Layer | Hardware | Operating System Network

Types of Military Simulations

o Aggregate simulations model military units as a single
aggregate thing, which only interacts with other
aggregate things

e Entity-level/ simulations model military systems at the
vehicle and munition level (usually), entities interacting
with each other.

e Engineering-level simulations model the individual
components of a vehicle/ munition system separately,
usually to perform engineering analysis

Distributed Simulations

e A distributed simulation is one in which multiple
simulations are run on multiple computers connected by

a network.

e Homogeneous distributed simulation — the same
simulation is run on all computers (e.g., OneSAF)

e Heterogeneous simulation — different simulations,
usually developed by different development agencies or
contractors, and usually containing different
assumptions, purposes, and different simulation
engines, are run on separate computers.

e A set of heterogeneous simulations is called a “federation”’ of
simulations

10

Types of Distributed Simulation

“Live” — uses operational personnel and
hardware (real aircraft, real ships, real
tanks)

“Virtual” — uses operational personnel with
equipment that is not operational but
preserves operational user interfaces (flight
simulator, tank simulator)

“Constructive” — pure computer programs,
either controlled by human operators
("semi-automated forces”) or run entirely
without human intervention (“closed”)

There is nothing magical about these
classifications, and some simulations may
fall into zero or two of these categories

» Constructive .

a0

Public Data Structures and APIs for
Distributed Simulation

e Just like models, entire simulations have a “"public face”: the set
of data structures and APIs about their models that they make
available to the rest of the world

e We call these public data structures and APIs “object models” for historical reasons
e All of them together represent the “ Federation Object Model’ for that federation

Model A | Model B | Model C | Model D Model A | Model B | Model C | Model D

Object Model D Object Model E

e Simulations can only interoperate to the extent that they share a
common set of public data structures and APIs (object models)

Common Communication Mechanisms
for Distributed Simulations

e Simulations can only communicate if:
e They have a common language to talk with (common object models)

e They share the same mechanism for encoding this information for transport
(data transport software library, also called Middleware)

e The use the same network protocols.

Model A | Model B | Model C | Model D Environment Model A | Model B | Model C | Model D Environment

Simulation Engine B

Object Model D Object Model E

Data Transport Library

Object Model D Object Model F

Data Transport Library

Network Packet \ / Network Packet

Network 13

Integrating Independently
Developed Simulations

e Generally these simulations are not built with a
knowledge of each other

e Built by different contractors with different fidelities
for different purposes

e Not akin to anything in the commercial world

e Different environment models

It can’t be stressed enough that simulations with different
models of the environment generally do not play fairly

together. Great care must be taken to ensure that their
environment models are similar enough to achieve the
event’s objectives.

14

Standardization Options

Model A | Model B | Model C | Model D

Environment

Object Model D Object Model E

Data Transport Library

Network Packet \

. Standardize at the model “public

face” and have everything common
below (e.g., OneSAF)

. Standardize at the Simulation

engine and below (e.g., SPEEDES)

. Standardize at the public data

structures and APIs (object models)
and below (e.g., HLA and TENA)

. Standardize at the Data Transport

Library and below (e.g., VRLink)

. Standardize at the network packets

only (e.g., DIS)

The “higher up” standardization occurs:
« The more reuse there is
 Integration can be simpler
* Interoperability can be greatly improved

But:

« Simulation developers are more constrained in what they can do
* The initial costs are much higher and the risk of failure is greater (JMASS)

Live, Virtual, Constructive
Integration

e The ability to integrate simulations from each of the
three areas.

e Extremely tricky due to the unforgiving nature of live
systems (hard real time constraints)

e Some questions

e What does is mean to integrate multiple independently-created
simulations?

e What architecture(s) should you use to actually do the integration?
e Does it work?
e What are the known issues?

16

LVC Integration Issues

e Issues can be divided up into categories
e Fair Fight

Terrain Correlation between different L/V/C sims when the sims
interact with each other

Integrating live sensor systems with simulated entities (e.g., ACES)
Integrating live and simulated C4I (messages, voice, video)

e Software Connectivity
Time synchronization (NTP? GPS? HLA/TENA “Time Management”)
Bandwidth management (L/V/C interactions/messages within network
limits)
Object Model and network transport protocol incompatibility

e Hardware Connectivity
Bridging multiple security domains

17

Differences Between L, V, and C
Simulations in a Few Categories

Constructive

Item Live Virtual SAF Closed LVC
Individuals Real Real Real/Sim Simulated Both
C4 Systems Real Real/Sim Simulated Simulated Both

Sensors Real Simulated Simulated Simulated Both
Vehicles Real Simulated Simulated Simulated Both
Weapons Real/Sim Simulated Simulated Simulated Both

EW Real/Sim Simulated Simulated Simulated Both

Cyber Real/Sim Real/Sim Simulated Simulated Both
Environment Real Simulated Simulated Simulated Both

Time Real Real Real Logical Real

To understand the magnitude of the problem, one needs to

understand all of the interactions between all of the items on this

chart and manage them so as to produce as fair a fight as

possible, for both test and training.

18

Integrating Independently Developed Simulations -
Urban Resolve 2015 SIM Architecture Example

ofo EL SERUNDO
X % DIS GW B2

%‘ - B IR e |
4 OF OTB)
SA EFS ASTi
DIS GW

XN

OF OTB

SPAWAR)
FIRESIM
e PENTAGON -_1
SA

DIS GW —

EADSIM

SA
DIS GW
H
HUNNALLE —

AF-TM

AF-AD
= ST
I D[S - Multi
DIS GW2 W SITE S - Multicast

I PITCH - Multicast
CONNECTION s D) - Broadcast

22

Integrating Independently Developed Simulations -
Distributed Test Event 5 / Multi-Service Distributed Event

m [smAF [F16] H || ATC
’ - H_AsT] [Fe | 1 DIS/RPR Gateway] 1| EPGFL - AsTi TEC ALCES —
. DIS/RPR Gateway]—
I HRed AD F16 1 I RPWS H atoway] ALCES
l Eﬁ‘ I __VDMS ’ DAS HLAControl
e DOS (C3Grid
Virtual DI l LEE (C3Gad)
RPWS Server HLABCT
MTS (C3Grid)
WSMR —MSDE & 3CE earletnet B raedetar s it e I OCS (C3Grid)
—-—MSDE Only UAMBL —{OF OTB Gateway |~ I
-|DIS/RF‘R Gatewaﬂ_- ~~~"3CE Only —~|DIS/RPR Gatewaz}- Effects Server[| | OTB 1
. - ACRT] OFOTB |- OTB 2
WSMR Live IFF |- { e | 11
rl_Bews - [oms
| T
S YPG -[RPWS [SASener | I SANDS (C3Grid)
= DIS/RPR Gatewa I CMS2
> BEWS: i orore ' NVIG
° s rrem g aen bl s Tsl 2y 4
°
. |72 . -
| E | MATREX Federation WAN

DTE Federation WAN

[Dahigren | | PAX E-2C 1 EPGFH RTTC _ vz |
" L ’ | -|Fed-to-Fed Bridge
1 il 1 || { omcas2 |
SN | 1= ! |} romove s
2 il |
T . H_E2C] | | "'" : | DISIRPR Gateway] | OTB CAB 2 Live
' ol -[__OTB Threat |
T] I - | HVitual Helicopter | [CAT |- { OTB Threat |
e o RPWS 1 | IR Scene 1
P T e =y [—},|
China Lake F-18 . . PAXF-18 AMRDEC HDS T e [RScene2_|
: | I Nl |
1 | .} - | (oeeasEAPs Tz N [Rscmes]
| ' RPWS3 |-
- asTi] « 1 HAst][F18 ||| [EAPS Fire Control | — | i &
i L | I I Intelligent Exercise Mon lor] Lm RPWS 4 B IL]
: H i I | I A2C2 Monitor ASTi 4 i" [W\I_ —l ASTi 1
1 : TENADIS | [AsTi2
reen | i ATz]
cL.se]l 23

Four Main Distributed Simulation

Integration Strategies

e Custom integration

Most costly in both the short run and the long run

May meet customer requirements better (but probably doesn’t)
Creates stovepipe

e Distributed Interactive Simulation (DIS) protocols

Widely used

International Standard

Large set of “object models” (PDUs) defined

Free open-source software libraries available
Constrains developers into a single simulation paradigm

e High Level Architecture for Modeling and Simulation (HLA)

International Standard
Contains more functionality and flexibility than DIS
Only available commercially

e Test and Training Enabling Architecture (TENA)

Government-sponsored open standard
Contains much more functionality to help developers than HLA or DIS

Enforces data contracts using the software language compiler — can’t make data contract
mistakes

All software and support are free to users

24

Conclusions About Integrating
Disparate LVC Simulations

e Ideally, integrating disparate simulations would entail
e One integration architecture
e One world-view
e One integration contractors

e Unfortunately, it's almost always:
e Different vendors/contractors
e Different world-views
e Different integration strategies/protocols supported

e Options:
e Rewrite some simulations
e Use gateways from HLA <-> DIS <-> TENA ,etc.
Lose fidelity
Lose measurable fair fight
e Live with imperfection

e Accept that multi-architecture events are the norm
e Bring in the right systems engineering team

25

Some Pointers From An Engineer

You will never have decent requirements to start from. Consider yourself lucky
if you actually get them in writing.

Your requirements will change halfway through your project.
No two individuals will ever agree on what data structures should be used.

If you ever need a common tool, there are at least 15 that will do almost what
you need. None of them will do what you need though. You'll have to change
what you need or build a 16th tool.

Communication issues are always your software’s fault, even when the
network is broken.

There is never a reason why network issues get fixed. The network just
magically starts working after enough complaints are sent to the network
engineers. But there was never anything wrong that anybody can point to.

System administrators will always need a certification to run your software on
their machines. Nobody will ever know where this certification is supposed to
come from or how one might obtain it.

There's always at least one STIG that would completely prevent any P(rogress
in any DoD event. Therefore, general DoD guidelines are to never make
progress using computers.

If you ever answer a question about the numerous bizarre protocols you will
work with, you're now considered SME on that subject (there aren't that many
of us evidently). Be very careful what questions you answer or you might find
yourself giving a training in that subject in a few years.

26

References

e Andreas Tolk, ed. et al., Engineering Principles of Combat Modeling
and Distributed Simulation, Wiley, 2012

e Richard M. Fujimoto, Parallel and Distributed Simulation Systems,
Wiley, 2000

e Douglas Schmidt et al., Pattern Oriented Software Architecture
Volume 2: Patterns for Concurrent and Networked Objects, Wiley,
2000

e IEEE Standards for HLA
e http://standards.ieee.org/findstds/standard/1516-2010.htm|
e http://standards.ieee.org/findstds/standard/1516.1-2010.html
e http://standards.ieee.org/findstds/standard/1516.2-2010.html

e IEEE Standards for DIS
e http://standards.ieee.org/findstds/standard/1278.1-2012.html
e http://standards.ieee.org/develop/project/1278.2.html

e TENA Documentation, Compliance, Software Downloads, Repository
e http://www.tena-sda.org/
e https://www.tena-sda.org/display/intro/ TENA+Compliance+Specification
e http://www.tena-sda.org/repository/ 27

http://standards.ieee.org/findstds/standard/1516-2010.html
http://standards.ieee.org/findstds/standard/1516.1-2010.html
http://standards.ieee.org/findstds/standard/1516.2-2010.html
http://standards.ieee.org/findstds/standard/1278.1-2012.html
http://standards.ieee.org/develop/project/1278.2.html
http://www.tena-sda.org/
https://www.tena-sda.org/display/intro/TENA+Compliance+Specification
http://www.tena-sda.org/repository/

Distributed Interactive
Simulation (DIS)

Shamelessly Stolen
and (Slightly) Modified from

Mark McCall, DIS PDG Chair, markmccall@sisostds.org

Don McGregor, NPS, mcgredo@nps.edu

mailto:markmccall@sisostds.org
mailto:mcgredo@nps.edu

Overview

e General DIS Overview

DIS
DIS

Key

History
Documents

Definitions and Concepts

e PDU Families

e The Updated DIS Version 7 Standard
e |[EEE 1278 Update History
e General standard improvements
e PDU-specific improvements and new PDUs
e Annexes

Distributed Interactive
Simulation (DIS)

e Distributed Interactive Simulation (DIS) :
e Time and space coherent synthetic representation of world
environments

e Designed for linking the interactive, free-play activities of people in
operational exercises

e Synthetic environment is created through real-time exchange of data
units between distributed, computationally autonomous simulation
applications

e Computational simulation entities may be present in one location or
may be distributed geographically

e DIS defines standard Protocol Data Units (PDUs)

e Syntax (format) and semantics (rules) for data exdéirangé&@ndor2
simulation interoperability

DIS History

e August 1989 — First DIS Workshop
e Decided to develop DIS using SIMNET as core protocol

e March 1993 — IEEE Std 1278 approved

e Sept 1995 — IEEE Std 1278.1 revision approved

e 1997 — DIS Workshops replaced by SISO & SIWs

e March 1998 — IEEE Std 1278.1a addendum approved
e 2002 — IEEE 1278.1/1a Reaffirmed

e 2012 — IEEE 1278.1-2012 Passed (DIS Version 7)

e Currently working on DIS 8.

Standard for DIS —

Application
Protocols

DIS Documentation
Relationships

Distributed Interactive
Simulation standards,
recommended
practices, and related
documents

IEEE 1278.3-1996

IEEE Std 1278.1- IEEE 1278.2-1995 IEEE 1278.4-1997

Standard for DIS Rec. Prac. for DIS

Rec. Prac. for DIS

Exercise Mgt. and
Feedback

Communications
Services and
Protocols

SISO-REF-010 Enumerations for Simulation Interoperability

Verification,
Validation, and
Accreditation

Key DIS Concepts

e No central computer controls the entire simulation
exercise

e Autonomous simulation applications are responsible for
maintaining the state of one or more simulation entities

e A standard protocol is used for communicating ground
truth data

e Changes in the state of an entity are communicated by its
controlling simulation application

e Perception of events or other entities is determined by
the receiving application

e Dead reckoning algorithms are used to reduce
communications processing

Key DIS Definitions

e Simulation entity:

e A physical object in the synthetic environment that is created and

controlled by a simulation application and affected by the exchange of
DIS PDUs

e |t is possible that a simulation application may be controlling more than
one simulation entity

e Protocol Data Unit (PDU)

e A message containing information about the virtual world
e Sent from one participant to one or more other participants
e Encoded as a UDP packet on the network in a specific format

IEEE Std 1278.1-2012

DIS Messages

[PDU]

{ Entity Information] { Warfare] {

e

{Entity State]{ Collision] { Fire] [Detonate}

Several dozen different messages (called Protocol Data
Units, or PDUSs) to describe entity movement, collisions,
combat, radio communications, logistics, and more. The
Entity State PDU is the most widely used

PDU Families

¢ Entity information/interaction

e Warfare

e Logistics

e Simulation Management

e Distributed Emission Regeneration
e Radio Communications

¢ Entity Management

e Minefield

e Synthetic Environment

e Simulation Management with Reliability
e Live Entity

e Non-Real Time protocol

e Information Operations

PDU Families (Cont)

¢ Entity information/interaction
e Appearance of an entity
e Location of an entity

e Entity collisions
e Attribute PDU (Version 7)

e Warfare

e \Weapons

e Expendables

e Explosions

e Fire/Detonate

e Directed Energy (Version 7)

e Entity Damage Status (Version 7)

DIS: API

e DIS doesn’t have an API. This seems strange to people

coming from HLA or TENA, but reflects common practice
in networking protocols

e The standardized part is the format of the messages on the wire. The
standard is silent about how to create or receive those messages

e Different DIS vendors have different APls, but all produce the same
format messages. This is in contrast to HLA, which has a standard
API, but is silent about the format of messages on the wire. As a

result, different HLA RTI vendors usually use different message
formats for exchanging information

e TENA standardizes the API, and there is a single approved

implementation of the RTI equivalent; this sidesteps the wire standard
problem because there is only one approved RTI equivalent

DIS Example - Send ESPDUs
in Java

public void sendEspdus()
{
try

{
EntityStatePdu espdu = new EntityStatePdu();

espdu.getEntityID().setSite(CHINA LAKE);
espdu.getEntityID().setApplication(NPS);
espdu.getEntityID().setSite(1l);

EntityType type = espdu.getEntityType();
type.setEntityKind((short)l);
type.setDomain((short)l);
type.setCountry(222);
type.setCategory((short)2);
type.setSubcategory((short)l);
type.setSpec((short)l);

espdu.getEntityLocation().setX(1000.0);
espdu.getEntityLocation().set¥Y(2000.0);
espdu.getEntityLocation().setZ(3000.0);

for(int idx = 0; idx < 100; idx++)

{
byte data[] = espdu.marshalWithDisAbsoluteTimestamp();
DatagramPacket packet = new DatagramPacket(data, data.length, destinationAddress, port);
socket.send(packet);
Thread.sleep(1000);
}
}
catch(Exception e)
{

System.out.println(e);

}

Entity Coordinates

e Geocentric Coordinates
e Position and Orientation

e WGS-84 elliptical Earth model
e Units in meters and radians

Z-axis =

Prime (A) 90° East
meridian |
| > 4——-»‘

X-axi Y-axis

Figure 1—World coordinate system

Entity Type Identification

ENTITY TYPE RECORD

Entity Kind 8 bit enumeration
Domain 8 bit enumeration
Country 16 bit enumeration
Category 8 bit enumeration
Sub Category 8 bit enumeration
Specific 8 bit enumeration
Extra 8 bit enumeration

Hierarchical designation of Entity Type

Enumerations are listed in SISO-REF-010
Over 13,000 entity types

Examples of Type

Enumerations
Kind | Domain | Country | Category | Sub Specific | Extra
Category

F-15C 1 2 225 1 5 3 -
F-15E 1 2 225 1 5 5 -
MiG-27K |1 2 222 2 1 2 -
M1A2 1 1 225 1 1 3 -
Abrams

T-72B 1 1 222 1 2 6 -
D 98 York | 1 3 224 4 1 12 -
Mk 44 2 / 225 1 9 - -
torpedo

Entity Instance Identification

Site 16-bit unsignec
Application 16 bit unsigneg
Entity 16 bit unsigneg

s Combination of 3 numbers identify individual entities
and objects

s EXxercises can assign site numbers, sites can assign
sims at the site, sims can assign entity numbers

Example: Entity
State PDU (part 1)

Table 131—Entity State PDU

Field size
(bits)

Entity State PDU fields

96

PDU Header

Protocol Version—8-bit enumeration

Exercise ID—8-bit unsigned integer

PDU Type—8-bit enumeration

Protocol Family—8-bit enumeration

Timestamp—32-bit unsigned integer

Length—16-bit unsigned integer

PDU Status—8-bit record of enumerations

Padding—S8 bits unused

48

Entity ID

Site Number—16-bit unsigned integer

Application Number—16-bit unsigned integer

Entity Number—1 6-bit unsigned integer

Force ID

8-bit emumeration

Number of Variable Parameters (V)

8-bit unsigned integer

Entity Type

Entity Kind—8-bit enumeration

Domain—=8-bit emumeration

Country—16-bit enumeration

Category—8-bit enumeration

Subcategory—8-bit enumeration

Specific—8-bit enumeration

Extra—8&-bit emumeration

Alternatve Entity Type

Entity Kind—8-bit enumeration

Domain—_8-bit emumeration

Country—16-bit enumeration

Category—8-bit enumeration

Subcategory—=8-bit enumeration

Specific—8-bit enumeration

Extra—8-bit emumeration

96

Entity Linear Velocity

X-component—32-bit floating point

F-component—32-bit floating point

Z-component—32-bit floating point

Example: Entity
State PDU (part 1

Table 131—Entity State PDU (continued)

Field size
(bits)

Entity State PDU fields

Entity Location

X-component—64-bit floating point

F-component—64-bit floating point

Z-component—~64-bit floating point

96

Entity Onientation

Psi (y)—32-bit floating point

Theta (8)—32-bit floating point

Phi (§)—32-bit floating point

Entity Appearance

32-bit record of enumerations

320

Dead Reckoning Parameters

Dead Reckoning Algorithm—8-bit enumeration

Other Parameters—120 bits reserved

Entity Linear Acceleration—3 x 32-bit floating point

Entity Angular Velocity—3 = 32-bit floating point

96

Entity Marking

Character Set—8-bit enumeration

11 8-bit unsigned integers

Capabilities

32-bit Boolean record

Varizble Parameters #1

Record Type—=8-bit enumeration

Variable Parameter fields—120-bits

128

Varizble Parameters #N

Record Type—=8-bit enumeration

Variable Parameter fields—120-bits

Total Entity State PDU size = (1152 + 128N) bits

where

N 1is the number of variable parameters

Dead Reckoning and
Smoothing

¢ Entity sends update when error > threshold
e Receiver extrapolates between updates
e Spatial jJump at update is smoothed over

DIS V7 - Extensive
clarifications

e New and improved rules
e Lessons learned from 15 years of use

e New standard is 747 pages
e The 1995 and 1998 standards combined were 330 pages

Even if you have no plans to use any of the new
features, the new standard is still extremely useful

Compatibility with Version 5/6

e Almost every change in the PDU formats and rules are
backward compatible with Version 5/6 PDUs

e Most changes are also forward compatible (i.e. Version 5
simulations can still make sense of Version 7 PDUs)

e Use of former padding fields
e New sims can add info, old sims ignore it

Protocol Extensibility

e DIS now more easily customized
e Corrects a weakness in the original standard
e Backward compatibility maintained mostly

e Variable Parameter Records
e Entity State, Detonation

e Standard Variable Records
e Transmitter, IFF, DE Fire, Entity Damage, IO

e Attribute PDU

e Can extend all other PDUs
e Or, info that doesn’t have a PDU

Variable Parameter Records

e The Articulated/Attached Parts record in the Entity State
and Detonation PDUs has been opened up for extension

e First 8 bits denotes record
e Other 120 bits is definable

e Still fixed at 128 bit length Entity Separation VP Record
e 3 new records so far Parameter Type 8-bit
i Designator enumeration
e Several ideas for other = ;
eason for 8-bit
dppearance records Separation enumeration
Pre-Entity Indicator | 8-bit enum
Padding 8-bits unused
Parent Entity ID 48-bit enum
Padding 16-bits unused
Station Location 32-bit enum

Five New PDUs

e Directed Energy Weapons
e Directed Energy Fire PDU
e Entity Damage Status PDU

e Information Operations
e |O Action PDU
e |O Report PDU

e Attribute PDU

e Adds extensibility to the DIS
standard

The Attribute PDU

e Allows existing PDUs to be extended without breaking
forward or backward compatibility

e The PDU contains sets of Attribute records
e Each set is tied to an entity or object

e Attribute records are open format Standard Variable
records

e Not allowed to contain information that already exists in
other PDUs

e Otherwise, there would be confusion about which PDU to use

DIS: Implementations

e Where can you get a DIS implementation?
e \Write your own
e Buy one. There are several commercial implementations
e Use an open source version
® Open-DIS (http://open-dis.sourceforge.net)
e Java, C++, C#, Objective-C, Javascript
e KDIS (http://sourceforge.net/projects/kdis/)
o C++

e Aquaris (http://sourceforge.net/projects/aquariusdispdu/)
o C++

e JDIS (http://sourceforge.net/projects/jdis/)
e Java

26

http://open-dis.sourceforge.net
http://sourceforge.net/projects/kdis/
http://sourceforge.net/projects/aquariusdispdu/
http://sourceforge.net/projects/jdis/

New and Improved (in
progress) DIS V8

e The DIS Product Support Group at SISO is currently
evaluating changes for the next DIS Standard (DIS v8).

e Important changes to consider
e 64-bit structures and alignment
e Little Endian number transmission
e New timestamp representation
e Full implementation of PDU variable part structure from DIS v7

e Participation is open and input from all is welcomed.

Compatibility Between DIS
Versions

e Backward compatibility: New applications can process
old formats
e A version number in the protocol provides this
e The standard does not require this because we cannot enforce
requirements on user’s software applications

e Forward compatibility: Old applications can process new
formats

e Unusual because old applications can't predict the future
e DIS Version 5, 6, and 7 are mostly forward compatible

e PDUs were upgraded by adding new info to padding fields
e But, little padding remains available

e Gen3 (DIS 8) will break forward compatibility

e A clean-sheet design is necessary

Forward Compatibility
Beyond Version 8

e Rules for future PDU changes written in V8
e Allows V8 simulators to process V9 and later PDUs

e New Compatible Protocol Version field
e Indicates that a new version PDU is forward compatible

e PDU header can be expanded in later versions by adding
new fields at the end

e Rules tell older simulations how to skip over it using a new Header

Length field
e PDU body is partially extensible by adding extra padding
in V8

e The fixed body could use the same length trick as the header, but it
doesn’t

e A little extra padding in every PDU is simpler

e Variable Records can also be used for expansion

DIS 8 Proposed Entity State
PDU

Proto Ver Compat Ver Exercise ID PDU Type PDU Status HDR Len PDU Length
Timestamp
Entity ID Sequence Number
Entity Type
Padding

Entity Appearance

Entity Capabilities

Entity Location

Entity Orientation

Force ID DRA Num Variable Records (N)
Record Type = 2001 (Attached Parts Variable record) Record Length Padding Num Parts
Array of Attached Part record
Record Type = 2010 (Dead Reckoning Variable record) Record Length Padding
Entity Linear Velocity
Entity Linear Acceleration
Entity Angular Velocity
Padding

Variable Record 3

Variable Record N

<o

Some Other Requested
Improvements

e PCR 276 — Data Representation
(Eliminate Endian conversion)

e PCR 262 — Simpler voice
communications

e PCR 217 - Digital Messaging

e Remove redundant and unused
PDUs

e PCR 130 — Redesigned
Designator PDU

e Support for Higher Fidelity SIMs

e PCR 267 — Header
e PCR 257 — Improved Timestamp

e 64-bit integer includes year,
day, hour, etc., with
microsecond resolution

e PCR 258 — Sequence Number to
detect dropped PDUs

e PCR 260 — Geodetic
Coordinates

e PCR 261 — Combine
Entity/Object to avoid ambiguity

e PCR 233 — Machine-readable
XML Syntax Language

Bibliography

e SISO: http:/Isisostds.orqg

e SISO DIS Protocol Support Group:
http://discussions.sisostds.org/topiclistview.aspx?fid=32

e Open-DIS: http://open-dis.sourceforge.net

e SEDRIS SRM: http://sedris.org

e MaK: http://www.mak.com

e Kdis: http://kdis.sourceforge.net

e Wireshark: http://wireshark.org

e WebGL.: http://www.khronos.org/webgl/

e X3D: http://Iwww.web3d.org http://x3dgraphics.com/slidesets

e WebLVC: http://discussions.sisostds.org/topiclistview.aspx?fid=256

e WebSockets: http://tools.ietf.org/html/rfc6455 ,
http://www.w3.org/TR/websockets

32

http://sisostds.org
http://discussions.sisostds.org/topiclistview.aspx?fid=32
http://open-dis.sourceforge.net
http://sedris.org
http://www.mak.com
http://kdis.sourceforge.net
http://wireshark.org
http://www.khronos.org/webgl/
http://www.web3d.org
http://x3dgraphics.com/slidesets
http://discussions.sisostds.org/topiclistview.aspx?fid=256
http://tools.ietf.org/html/rfc6455
http://www.w3.org/TR/websockets

Live-Virtual-Constructive
Interoperability
Techniques: HLA

Randy Saunders

Agenda

= The High Level Architecture (HLA) Technology
* Rules of the Road
* Run-Time Infrastructure (RTI)
= Object Modeling
= Model Reuse
= HLA Future Growth
= HLA Evolved Adoption
= What Comes Next

APL

HLA Technology

= HLA technology is open architecture, free-to-use, defined in
open international Standards under IEEE.

= |[EEE Std 1516-2010 Framework and Rules
= |[EEE Std 1516.1-2010 Federate Interface Specification
= |[EEE Std 1516.2-2010 Object Model Template (OMT)

= Commercial suppliers provide software which implements
the Interface Specification and tools to facilitate the
manipulation of HLA Object Models.

= Migration plans and tools are available to enable transition
from legacy HLA 1.3 implementations.

APL

HLA 1516 Framework and Rules

5 Rules for Federations

1. Federations shall have an HLA Federation Object Model
(FOM), documented in accordance with the HLA Object
Model Template (OMT).

2. In a federation, all simulation-associated object instance
representation shall be in the federates, not in the runtime
infrastructure (RTI).

3. During a federation execution, all exchange of FOM data
among federates shall occur via the RTI.

4. During a federation execution, federates shall interact with
the RTI in accordance with the HLA interface specification.

5. During a federation execution, an instance attribute shall
be owned by at most one federate at any given time.

APL

HLA 1516 Framework and Rules

5 Rules for Federates

6. Federates shall have an HLA Simulation Object Model (SOM),
documented in accordance with the HLA Object Model Template
(OMT).

7. Federates shall be able to update and/or reflect any attributes and
send and/or receive interactions, as specified in their SOMs.

8. Federates shall be able to transfer and/or accept ownership of
attributes dynamically during a federation execution, as specified in
their SOMs.

9. Federates shall be able to vary the conditions (e.g., thresholds)
under which they provide updates of attributes, as specified in their
SOMs.

10. Federates shall be able to manage local time in a way that will allow
them to coordinate data exchange with other members of a
federation.

APL

Distributed Architectures

= Existing architectures (DIS, HLA, and others) share the distinction
between the Runtime Infrastructure, the Interface, and the simulation

Live
Participants

Data Collectors, Simulation
Viewers, etc. Surrogates

Interface

Runtime Infrastructure

DIS HLA
Runtime] _
Infrastructure Multicast UDP/IP | Commercial RTI
Application IEEE 1278 IEEE 1516
Interface Data Units Programmer API APL

0%

HLA Capabilities

= Existing architectures have built
feature sets that provide for a
broad spectrum of capabilities.

= Base studies have shown that
some features are used much
less often than others.

Information management

Ownership
transfer

Save & Restore

Object Management

84%

Pass interactions

DIS - The core

Multiple message types

8% Pt res | |n|t|a| e a

federation

%

61%

QOS
options

4%

46%

Synchronize

40%

31%

Event
ordering

2% 23%

O tumUpdatesOnForObjectinstance

HLA

DOtunlpdatesOfForObjectinstance

i P
% %

Object Management 1 P |

HLA Object Modeling

= An HLA Object Model (FOM or SOM) is not directly relatable to
Object-Oriented (OO) software technology.

= HLA interfaces do NOT require the use of an OO programming
language, and they do not exploit OO if used with one.

= HLA Object Models generalize the standardized object model
concepts of DIS, and provide structure for optimizing them.

= DIS had a static data concept, entities had fixed attributes and
interactions communicated through a set of Standard messages.

= HLA provides a mechanism for defining attributes and
interactions communicated through Standard API calls.

= With an OO programming language the objects created have
attributes and interactions which are directly used in code
statements to form programs.

APL

HLA Object Model Information Content

= HLA object
models are a
compromise
between existing
models and
future models
produced in
object-oriented
languages.

OO programs
can abstract HLA
object model
constructs in a
few language
classes.

Future Object Model (UML
Usage®™ T ° j ! :
o
Relational Data Model (IDEF1X)
' i |
Additional
Software e ®
or Metadata HLA-OMT
needed t
Common DIS Simulated
Usage ®—T—® Entities

Dr. Andreas Tolk 00S-SIW-024

APL

Model Reuse through HLA

= DSEEP step 3 considers reuse opportunities by examining how

existing components can be composed to construct a federation.
= Two composition techniques, commonly referred to as

aggregation, are employed in HLA.

* The effectiveness of composition can be limited by monolithic
simulations that do not expose component attributes or scale

instances efficiently.

Aggregation Types

Model Aggregation

Entity Instance Aggregation

Paul Gustavson (Simventions)

APL

Reuse Opportunities and Enablers

= The DIS data model represents a set of common features.
» Standardized representation in HLA through the RPRFOM
» Standardized representation in TENA through TSPI LROM
= Within an architecture, new models can plug in and establish
an initial operating capability.

= Between related architectures a bridge can handle conversions
and mapping between simulation representations.

Pata Collectors, ST Simulation Pata Collectors, Simulation

Simulations

Viewers, etc. Surrogates Viewers, etc. Surrogates

Runtime Infrastructure

APL

HLA Future

= HLA 1.3 is still in use, like DIS, for connection to legacy federates
with this interface.

= HLA 1516-2000 is one active deployment area, commercial
production products are available.

= HLA 1516-2010 (HLA-Evolved) incorporated dozens of new
features such as fault tolerance, rate control, and modular object

models based on user experiences with HLA. This is the HLA you
should be using!

= The IEEE P1516 Working Group is currently holding meetings and
incorporating comments to revise the Standards for the next
version of HLA.

* Future directions are set and funded by HLA users.

APL

Sample Feature #1 - Update Rate Control

* Federates often have different processing rates, and thus different

data needs.

= Prior HLA versions could burden a low data rate subscriber with
discarding updates that were not needed.

* This results in wasted processing time and network bandwidth
along the link to the low data rate subscriber.

* The RTI handles this situation and sends only needed updates.

=t = Publisher
Subscriber Subscriber

Subscribe l Subscribe l
Low (1 Hz) High (10 Hz)
Receive @
1 Hz

TurnUpdatesOn I

High (10 Hz) Update @
10 Hz
Receive i
10 Hz @ or higher

p———

RTI

I—

APL

28-Nov-18
RTGX

Sample change #2 - Modular FOMs

= HLA FOMs were always modular, but only through copying data
from SOMs or other sources into a new FOM.

= The RTI now loads FOM modules incrementally, reducing
duplication and FOM distribution logistics.

My Federation
Management

- APL

New Features being debated

» Clarifications, explanations, and fixes to ambiguities

= Simplified rules for switches and FOM merging

= Relaxation of DDM rules under federate control

= More general datatypes, including variable record structures

* Instance-specific services/interactions
* Fixed structure network protocol between Federate and RTI

= Certificate based Federate authentication

* Join the Working Group and make your needs known.

APL

Practical Considerations

* In designing a distributed solution, cost drivers include:
» Infrastructure availability
= Previous integration experience
= Your developers
= Your simulations
Tools for analysis, testing, and bridging
= Available for your infrastructure
= Standards for future evolution

Higher levels of conceptual interoperability require better
understanding of how the simulations represent the problem

= Correspondingly higher levels of VV&A effort

Intellectual property provisions in the simulations, databases,
scenarios, and analysis tools

APL

Future Directions — Up To You

* SISO and the IEEE have re-opened the HLA standards
for revision.

* If you join the SISO HLA group you will be able to help
identify what ideas are folded into the next version of
the standards.

= Current topics include:
= Service interfaces to HLA objects

* Object-Oriented programming language objects
generated automatically from HLA SOM

* Defined transport (DDS or something else) compatible
with DIl COE

APL

Questions

Randy Saunders
Johns Hopkins APL
+1.443.778.3861

<Randy.Saunders@jhuapl.edu>

APL

0
o
w =
3 o
(44 o
o) v
. b -
o o
. Ly
—
<

Dr. Edward T. Powell
TENA Architect

What are JMETC and TENA?

e A corporate approach for linking distributed facilities for test
and evaluation

e Enables customers to efficiently evaluate their warfighting capabilities in a
Joint context

e Provides compatibility between test and training
e A core, reusable, and easily reconfigurable infrastructure
e Consists of the following products: JMETC Networks Using DREN
e Persistent connectivity < and SDREN
e Middleware

e Standard interface definitions
and software algorithms

e Distributed test support tools
e Data management solutions
e Reuse repository ~

e Provides common joint testing process and customer
support team for JMETC products and distributed testing

TENA Software,
Object Models,
Tools,
Repository

AIR FORCE
S 2\
AlIT19VSOdINOD \

JMETC Provides an Agile Infrastructure for
Distributed Testing

Early System Mission-Based System-of-System Operationally Cost
Verlflcatlon Engineering Environment At-Scale Relevant Eﬂective Jp—

Qe ' v ' . 2k Imegratlon
; b - v Labota:

Systems
Under Test
Installed System

Test Facilities

Services

Measurement
Wi Facilities
Tactical Network .) 5
Emulation — - =
- f ;’7».::. S

-

Instrumentation
T&E S&T

CTEIP

Ta e g T
-

'w. =

Tactical
Scenarios

TENA Pr '
otocol System Range High-Level Distributed Interactive
Middleware Translators Adaptors Gateways Protocols Archltgcture (HLA) Simulation (DIS)

;%iﬂ}%’.;ﬁ{ﬁ“‘,,‘.a,[é;!jﬁ s @

T MMIIeI(e Kaowledge,
{—7 Management *

- "Processing

System Integration

l

Distributed Data
Collection

Cloud Services

Post-Event: E-
Data Reduction, Anal ysis
and Visualization

Common Tools

Infrastructure Services

Monitoring, Managemen

% and Control =

‘_Conﬁguration Cybersecurity
Management 2

Sampling of Test and Training
Assets Available on JSN

& [
:‘ (5ad e '
" ~ :
/ et Y - K4 !
,. ./ '
—] !
PR 1
L)
\ 1, ! .
<’ China Lake: R4
F/A-18, IBAR R
Pax River: Hawkeye,
= Manned Flight simulator.
X = vy Dahlgren: Rapid SIL
1 \ .
. R . . Wallops Island : Ship Self-
SPAWAR Systemd e e d Tinker AFB: AWACS h Defense System
Center Pacific . O ' ‘ i McLean MITRE: National
i o 7] Y Security Experimentation
Palmdale, Triton ' - 7z 1 ‘ |
NGC, Triton ;
Greenville: Rivet Joi

. WSMR IRCC
Camp Pendleton

Edwards ol - / }

Ft Hoed:
TTRKC, CTSF

wAFBe 4éth Tgst
Sq ad[’on

Egll

JMETC SECRET Network (JSN)

e Focus is on persistent connectivity
e Standing Agreements

e All sites have valid Authority to Operate (ATO) and Authority to Connect
(ATC)

e Daily full mesh, end-to-end network characterization ensure optimized
performance

e On demand usage with little to no coordination necessary
e MOAs in place to authorize connections between all sites

e Persistency enables user to...
e Test capabilities early and often
e Execute unscheduled/unplanned testing whenever needed
e Focus on the test rather than the network

e Operates at SECRET Collateral

e |Leverages SECRET Defense Research & Engineering Network (SDREN) for
connectivity

e Functional and growing since 2007

Customer time and dollars not spent on

infrastructure by leveraging JMETC

(O Edwards (2):
Ridley
412th EWG IFAST

China Lake &A
@ F/A-18, IBAR,
TSPIL AV-83

A Land Range, WSCI

Pomt Mugw(
@ ITEC CvCon
AN AEA, Sea W

® Camp Pendleton
MCTSSA
@ Corona: NSWC

@ Port Hueneme: NSWC
Point Loma : (2)
@ SSC-PAC 59140
@ SSC-PAC CTB LMMT
FTEC (Keyport Det.)
W. Interconnect Rfr.
Rancho Bernardo

NGC Triton
P

JMETC SECRET Network (JSN) Site Map

O Functional JSN Locations: 46 (access to 78 labs/facilities)
A Planned JSN Locations: 8
Connection Points to Other Networks: 5

\é&> @ Keyport NUWC n

Hawaii
@ MHPCC

A\ Pearl Harbor FIST2FAC
(Keyport Det.)

O Army

® Navy
@ Marines

@ Joint
O AirForce O Industry

As of 12 May 2017

DISTRIBUTION A. Approved for public release: distribution unlimited.

0 IS 0 0
Jo ~ . D
U J =~ U J ! L) IS DU ! . U OL O J U Rome NYAFRL
d-10-end netwo as : O \rittsfield e LS
. J L DU L] U U B N rt NUWC
ewpo
Moorestown (2):
WPAFB: SIMAF @cCsEeDS, OCPTS
Dugway Proving Ground Aberdeen: N
‘_ C.rane \| “@Atc-STE, AARL
NSWC RDT&E/NTN La O Arlington IDT
Da“ gren:
(3) IWSL, DOC, ICSTF
— Rapld-SIL/CZ
@ Redstone (12): SMDC T
RTC: DTCC, DISTL, AvSTIL o (iR
! AMRDEC SSDD 94 @ (; (():) EETZ;E(; gZ’AlI)I,-M;FLs,ATR
. AMRDEC SED: Patriot, : : ;
Lol o THAAD, FAAD, GSIL, JLENS, E-2C SIL, UASIL, P-8
; MUSE, C-RAM EP-3
Raytheon Tucson Ft. s'“‘ SMART Lab 7= ""TT—] ‘;JMETC SYSCON
/ GTRI East Interconnect Rtr.
________ ® Greenville Rivet Joint @ Js J6 DDC4 C4AD
it WSMRIRGG O Langley TDLITC
 —— @ Dam Neck CDSA
Ft Huachuca: (4) WK @ wallops Island SCSC
@ JiTC, JTDL, CMIS, JTRS ® /\/ ON:w:z?t ::;s NGC
Ft Hood (2): CTSF, TTEC : " LMCO Global \ision: VASCIC
7 "Rég BD(-?;):: s, { OManassas LM ASW
1 H Ibourne
GWEF, KHILS NGE JSTARS | OMcLean MITRE NSEL
/\Metro Park JMETC / TENA
_ SDA Lab y,

JMETC MILS Network (JMN)

e Focus is on providing secure distributed testbeds to support
unconstrained cyber activities and users access to
enterprise resources at multiple classifications

e Employs Multiple Independent Levels of Security (MILS)
architecture

e Allows for segregation of data Type 1 Encryption
streams by protocol, system, pe (f°'"a%
event, COl, etc. i

e Capable of supporting " DREN

_ (transport network)

multiple simultaneous events
at multiple classifications |
concu rrently Type 3 Encryption Tunnels %

(for isolation)
e Ability to create isolated “sandboxes”

e Accredited by Defense Intelligence Agency (DIA) to operate from
Unclassified up to TS//SCI

e Included NSA Red Team assessment

Primarily Used for Cyber Testing | .

What is TENA?

e TENA is a software architecture to promote interoperability
and reuse for assets in the test and evaluation community.

e TENA provides a large number of software libraries and
tools to make creating distributed test events easier and
more reliable.

e Core Architectural Tenets of TENA

e Promote Computer Enforceable System Interfaces

e Utilize Auto-Code Generation to Raise the Abstraction Level

e Let Computer Detect Interoperability Errors as Early as Possible
e Design the Middleware to Make it Hard to Use Wrong

e Anticipate Better Techniques and Technologies

e Emphasize Live-Virtual-Constructive Interoperability

TENA Architecture Overview

, .. TENA Applications

Sensors, instrumentation, display, control, safety, environment, processing

Range Resource)
Application Range Range { Reusable Replay Analysis

S Resource Resource H Applications | Application Applications
Object

Application J| Application
"". "".

| Management
System :

Ca e
Mission TENA Console TENA Data

BRI Gateway Collectors |
Planning ER '.’.g,
Object Model Utilities

Non-TENA Communications
P ! ! :
Compiler .| Non-TENA Non-TENA .., |
P System System

TENA Utilities

Benefits of TENA

e All TENA software and support is free to users
e Now supports both C++, Java, and .Net!
e TENA software is thoroughly tested and very reliable
e TENA Auto-Code Generation makes creating a TENA application as
simple as possible
e TIDE Tool manages installation and configuration, upgrading and maintenance
e Auto-generated starting points mean you never start with a blank page
e Rapid development of real-time, distributed, Live-Virtual-Constructive applications
e Auto-generated test programs make integration a snap
e TENA’ s technical approach emphasizes cost savings and reliability
e The TENA software is hard to use wrong
e TENA catches many user errors at compile time rather than run time
e TENA Tools provide unprecedented understanding of an event
e TENA has a standard object model enhancing interoperability

e The TENA web site/repository has extensive documentation, training,
and collaboration capabilities

e TENA has a plan for evolution and funding to execute this plan!
10

TENA Obijects
are Compiled In

e Why use compiled-in object definitions?
e Strong type-checking
e Don’ t wait until runtime to find errors that a compiler could detect
e Performance
e Interpretation of methods/attributes has significant impact
e Ability to easily handle complex object relationships
e Conforms to current best software engineering practices

e How do you support compiled-in object definitions?

e Use a language like CORBA Interface Definition Language to define
object interface and object state structure

e Use code generation to implement the required functionality

e Thus the concept of the TENA Definition Language (TDL)
was created

e Very similar to IDL and C++

11

How hard iIs it to create a new
TENA Object Model?

1. Name the object model, including file Example-Vehicle-ve.tdl

the Version package Example {
enum Team {
2. Define the message or object Team Red,
types needed by the application Team Blue,

Team Green };

3. Define the attributes that
characterize the messages and

class Vehicle {

optional string name;

Obje(:ts const Team team;
float64 xInMeters;
4. Determine if any attributes are R —
ConStant or Optional driveTo (float64 xInMeters,
float64 yInMeters) ;
5. Define any remote or local i

methods s

TENA has a powerful meta-model for defining expressive
object models, yet descriptive models are easy to create
12

TENA Standard Object Models:

A Common Set of Data Definitions for the Entire Range Community

e Platform Related

TENA-Platform-v4
TENA-PlatformDetails-v4
TENA-PlatformType-v2
TENA-Embedded-v3
TENA-Munition-v3
TENA-SyncController-v1
TENA-UniquelD-v3

e Time-Space Position Information (TSPI) Related

TENA-TSPI-v5
TENA-Time-v2
TENA-SRFserver-v2
TENA-Pointing-v1

e JNTC OMs (for Training)

JNTC-AirRange-v2
JNTC-CounterMeasure-v2
JNTC-IndirectFire-v2
JNTC-Instrumentation-v2
JNTC-NBC-v2
JNTC-ObstacleMinefield-v2
JNTC-Threat-v2

e Others
e TENA-AMO-v2

TENA-Engagement-v4
TENA-Exercise-v1
TENA-GPS-v3
TENA-Radar-v3

e In Progress

Range Instrumentation OM Suite
TENA-AVstream
TENA-LiftoffDetector
TENA-Link16
TENA-PowerController
TENA-SpectrumAnalyzer
TENA-Telemetry
TENA-Waypoint

TENA-Weather
TENA-LVC-Emitter

Additional JNTC OMs for training

13

TENA Repository

e Purpose: to contain all
reusable TENA data

e Current Repository Contents:
e All TENA Object Models, both standard and user-designed

e All TENA software (middleware, helpdesk cases, tools, gateways,
reusable applications, and reusable components)

e All TENA documentation
e Provide an easy-to-use secure interface to all of this information

1 1 Repository Server
e The Repository is a | ropeston Senve
col |ection of services and XML-RPC Handler REST Handler
technologies - Escuctyayey Authentiat Crowd
g i . . Security Interceptors T e S U SZ?vlif:Z on L i..ap Server
based around a wiki-like — -
- Aggregate Service Component Lock Service v ul
front end using REST and ndox Sorvic AachmentService [prooee 5o Server
XM L RPC Relationship Service w Persistence Service #% . . Database
- - ‘
‘ Adapter Layer Server

Confluence Adapter Subversion Adapter

v v
Confluence Server Subversion Server 1 4

TENA Middleware
Purpose and Requirements

e Purpose: high-performance,
real-time, low-latency
communication
infrastructure used by range resource
applications and tools during execution

e Requirements:

e Fully support TENA Meta-Model

e Be easy to use

e Be highly reliable

e Many varied communication strategies and media
e Including management of quality-of-service
e Including object-level security services

e Be high-performance, including
e Support multiple information filtering strategies
e Support user-defined filtering criteria

e Support a wide variety of range-relevant platforms (HW/OS/compiler)

e Be technology neutral

15

TENA Data Collection System
Purpose and Requirements

e Beta data collection
system released

e Supports
e Collecting arbitrary Object Model information
e Contains data viewer
e Contains playback capability

e Currently works with MySQL and SQthe database systems

_] Message

e Database schema follows i [—

the structure of the object == e
model, with separate table ~ ZZ=ir™ Lm0
for each object and
message type

e Separate Data Collector - _____________________ I
Ap p I i Cati O n :rlo::n?esendu . 1] . ' . m C,[I;Z);:Tmple:wlahicle,updats v

eeeeeeeeeee

[[) rowID INT
. EX O rt to Exce I fo r VI eWI n ApplicationId INT & L Example:Location,location,rowID INT
Session, D radiusinMeters DOUBLE

® Playback appl ication Q,“” _____________)

E,Middleware:Comm unicationProperties TEXT

|
|
|
|
|
|
:] L,Exam ple: ComplexAreaOfEffect v |
IIIIIIII I
» L Bxample: AreaOfEffect |
icationProperties TEXT robabil tyO"B gAffectedInPercent FLOAT l
|

|

|

TENA Provides Free GOTS LVC Tools
(Partial List)

e TENA Utilities—Making TENA easier to use

TENA Repository (automated software building, community source code
collaboration)

TENA Wiki (website collaboration for user groups)

TENA Issue Tracking System (task tracking system for user groups)
TENA Installer (cross platform software installation)

MagicDraw Plugin (converts UML diagrams in object model TDL syntax)

e TENA Tools—Helping you conduct and manage your event

TENA Middleware (C++, Java, .NET support for ~50 computer platforms)
TENA Console and Canary (event management and network monitoring)
DISGW (a TENA-to-DIS gateway).

ClearPath (multicast network testing)

TENA Data Collection System (collector, database export, and playback tools)
Interface Verification Tool (Platform generator to support testing activities)
Web Binding (provides JSON/REST http interface to TENA systems)
RelayNode (bridges different communication domains)

SII\/CIlels)TENA Plugin (3D visualization and analysis support for TENA object
models

TENAr\t/)ideo Distribution System (various tools related to video/audio stream
sSuppo

Mission Information Resource Controller (automated configuration for distributed
systems)

Network Communication Tools (chat, file transfer, etc.) 17

Other TENA Integration Methods:
Web Binding

e Web Binding is
automatically generated
based on object model

e Hub provides REST API
to web clients to
perform middleware

operations (e.g., P | | | 1 -
SUbscrl be to type i : i > WebBinding | & }
= . y Hub)
Vehicle and obtain B e o |
Web I OM B
u pd ateS) APP"‘:‘ﬂﬂon | Gateway i

e TENA data sent to and
from the Hub uses
JSON encoding

Other TENA Integration Methods:
Relay Node

e RelayNode is used to
bridge two executions
that may have different
communication
characteristics

e For example, one network
segment may be for a low -
data rate link and an B i
update would only need to —
traverse that link once,
and then be replicated by
the RelayNode to multiple
subscribers

e lllustration shows a
typical scenario with a
single WAN execution
and multiple LAN
executions

Relay Network

Relay EM

Relay Execution

Site A
Execution

Site B
Execution

Site EM[— — Site EM

O O
O O

19

TENA Interoperability
Architecture lllustration

n W
Different
Protocols

& 3

/"\
@

Gateway /

DIS, HLA

Typical TENA | &
Execution

3
Different »
3 Network
Characteristics

RelayNode | ¢

ey
/‘:/

RF Radio, Satellite
Web
Binding
A SNMP, TCP, S
o Proprietary /
Web
JSON, HTTP, . .
i Applications

20

Summary of TENA/JMETC Capabillities

f An Architecture for Ranges, Facilities, and k
Simulations to Interoperate, to be Reused, to be
Composed into greater capabilities)
_

e A Working Implementation of the Architecture
e TENA Middleware currently works on Windows, Linux, and Sun
e TENA Repository filled with information, tools, and object models
e A Process to Develop and Expand the Architecture
e JMETC Users Group and AMT Meetings
e A Technical Strategy to Deploy the Architecture

e JMETC process brings interoperability and reuse to test ranges

e A Persistent Network to permanently connect test sites

e JMETC network enabled with TENA allows new tests to be performed
with much less lead time and expense compared to the past

21

Contact Information

e Both TENA and JMETC provide free technical assistance
and training for any interested users. Contact information is
below.

e TENA Website: http://www.tena-sda.org

e TENA Feedback: feedback@tena-sda.org

e JMETC Website: http://www.jmetc.org

22

http://www.tena-sda.org
mailto:feedback@tena-sda.org
http://www.jmetc.org

Live-Virtual-Constructive
Interoperability
Future Techniques

Randy Saunders

Agenda

* Why the future might be different
= What the future might include
= One Hypothetical

APL

The Future ?

“Prediction is very difficult, especially if it’s about the future.”

-Niels Bohr
“The best way to predict the future is to invent it.”

- Alan Kay

* The M&S community, as part of the greater software community,
is carried along by emerging trends.

= Open Source Collaboration
= Multi-Purpose Data Streams

= Where might this lead?

APL

Future Environment

Users

~1lc

Who Really Cares?
All this is Off-The-Shelf to users.

APL

One (Potentially Random) Hypothetical

HLA TENA DIS
Federate Application Simulation

Standard 'It "‘ Standard A
API | API

Extensions :

Network

= Could an Open Source solution provide this sort of network?
= DDS is an example that could.

* Increasing use of DDS in the tactical community provides a reuse
opportunity PLUS integration into military networks.

Cloud Computing, Simulation-as-a-Service,

Virtual/Constructive Live

{ Internet, Magicm

~ //

Simulation #1 1 . | Simulation #2 1 Service Provider | Simulation #n 1

APL

Simulation in the Cloud

= Economic factors favor data center consolidation, virtualization,
and cloud hosting for software solutions in general.

What about Simulation Interoperability?

= DIS is a wire standard, based on multicast UDP
= None of the major commercial cloud providers support this.

= HLA and TENA are APls, so the middleware vendor has to adopt
some new communication solution for a VM environment.

= DDS (used in command and control) may be available, some day
= Service Interfaces of some form are mandated

All paths are TBD at this point.

APL

Conclusion: What’s the important Driver?

= Top Issues (From Ed’s part of the intro):
= Fair Fight

= Terrain Correlation between different L/V/C sims when the sims interact with
each other

» Integrating live sensor systems with simulated entities (e.g., ACES)
= Integrating live and simulated C4l (messages, voice, video)
= Software Connectivity
= Time synchronization (NTP? GPS? HLA/TENA “Time Management”)
= Bandwidth management (L/V/C interactions/messages within network limits)
= Object Model and network transport protocol incompatibility
= Hardware Connectivity
= Bridging multiple security domains

= None of these issues is Architecture-Specific.
= Different architectures provide different, small, subsets of the solution.

= Best-practice processes have been documented, including for multi-architecture
situations.

= You should use them!

APL

Questions

Randy Saunders Dr. Edward T. Powell
Johns Hopkins APL Ed Powell Consulting LLC
+1.443.778.3861 +1.703.587.8036
Randy.Saunders@jhuapl.edu epowell@tena-sda.org

APL

mailto:Randy.Saunders@jhuapl.edu

Integration Architecture
Advantages and Disadvantages

Outline

e Algorithm for picking the right architecture
e Just Kidding

e DIS — Distributed Interactive Simulation
e Pros and Cons

e HLA — High Level Architecture

e Pros and Cons

e TENA — Test/Training Enabling Architecture

e Pros and Cons

e Real Suggestions for Your Events

Algorithm for Picking the Right Architecture

Do you want Can you use
to work with Via what they Viae
other already use?
simulations? y '
No No

~_

“It Depends”
You'll need to
examine all these
other factors

DIS Advantages

DIS can be used on any operating system, no matter how small or large, no
matter how proprietary or embedded, how old or new.

DIS software can be written in any computer language: C, C++, C#, Java,
FORTRAN, Lisp, Ada, etc.

DIS software can run on any computer hardware platform, from the tiniest
embedded computer to the largest parallel supercomputer.

The behavior of DIS packets on the wire is documented and well understood,
relatively simple, and easily diagnosable.

DIS packets are very bandwidth efficient.
DIS is an international standard with support throughout the world.

DIS has an extensive "standard object model" with many thousands of man-
years of expertise behind it.

When recovering from a network partition, the DIS "federation" is self-healing,
although data collected from the partition period is corrupt.

DIS does not require any centralized processes to operate properly, simplifying
setup, testing, and operations.

Software that implements the DIS standard is available in both commercial and
open-source forms.

DIS Disadvantages

DIS fails silently
Relatively long integration time required
(Mostly) fixed object definitions - limited extensibility

Limited meta-model (C-struct-like PDUs) and model of the battlefield (entities
and interactions between entities) is fixed.

Dead reckoning giveth and dead reckoning taketh away

Not optimized for WAN operations

Paper standard - multiple interpretations likely, lots of code to write or acquire.
Data definitions and data communication protocols are inextricably intertwined.

Many mutually-incompatible extensions exist to meet operational needs beyond
what DIS defines.

Certain modeling constructs (e.g., EntityType) are modeled in a difficult way
making it hard to change or work with.

“My extensions to DIS are just fine; it's YOUR extensions that are screwing up
the exercise!”

HLA Advantages (Part 1)

Allows user-defined object models.

Leverages the work done on DIS with a FOM based on DIS PDUs (RPR-FOM),
though use of this FOM is not required.

Supports both persistent objects (“objects”) and messages (“interactions”)
Provides tested RTI interchangeability without code changes in the members.
Provides the most complete set of standardized simulation services.

Provides architectural support for variable time/global event ordering.

HLA-2010 provides architectural support for detecting and addressing
intermittent network upsets under software control without operator input
(however, these services are not necessarily implemented by any given RTI).

Provides mechanisms for bandwidth optimization through variable rate updates
or data use subscription without the use of filters or bridges.

HLA is an international standard.
HLA software (RTIs) are available as commercial and open source packages.
Many HLA-based tools and utilities are available either for sale or open source.

HLA Advantages (Part 2)

Contains the capability to use a modularized FOM.

Provides powerful interest management services between publishers and
subscribers.

Provides the ability to migrate ownership of an object between simulations

Allows users to choose between best effort (multicast) and point-to-point
reliable communication between federates on an object-class-by-object-class
basis.

Implementations can be extremely high performance (low latency, high
throughput).

HLA Disadvantages

Any given RTI works on only a limited set of Operating Systems/Compiler
combinations

No standardized wire format; indeed, the wire format is vendor-dependent and
thus is completely opaque.

RTIs from different vendors do not interoperate with one another.
Meta-model (OMT) provides limited object composability.

HLA objects are not “objects” in the object-oriented sense.

Very complex API.

No compiler-time error checking.

Commercial RTIs may have substantial license costs.

Most implementations require a centralized process of some sort to function.

Architecture requires user-application marshaling and de-marshaling of data
(though some implementations provide this for users).

Many RTI implementations do not work properly on unreliable networks.

TENA Advantages (Part 1)

Government owned, available to everyone free of charge
Allows user-defined object models

A robust standard object model exists (though using it is not required). Itis
not as extensive as DIS/RPR, but more relevant to the T&E range community.

Includes robust auto-code generation capability that auto-generates federation-
wide marshaling/de-marshaling code, links object models directly with
application code, generates fully functional test applications, and provides users
with almost-completely-filled-out auto-generated starting points.

Supports both persistent objects ("SDOs”) and messages ("messages”).

Contains an extremely robust fully object-oriented meta-model with many
capabilities including object composition, distributed pointers, vectors,
enumerations, remote method invocations, etc.

Allows the standardization of both the interface to, and the implementation of,
standard algorithms (local classes)

Multiple standard spatial reference frames (SRFs—"coordinate systems”) are
built in to the standard TSPI object model, including seamless conversions
between each.

TENA Advantages (Part 2)

Type-safe interface eliminates entire categories of programming errors

Allows users to choose between best effort (multicast) and point-to-point
reliable communication between federates on an object-by-object basis.

The Middleware is extremely high performance (low latency, high throughput).

Supports an industry-wide reuse repository for object models, source code, and
documentation.

Many reusable tools and utilities exist for TENA, all free, including those for
exercise management, data collection, and object-model management.

Guarantees that users in a federation are using the identical object model
definitions, and where appropriate, implementations.

Numerous government information assurance approvals exist for the TENA
software

A commercial TENA-based cross-domain solution exists from secret to
unclassified.

TENA is actively supported with DoD funding for evolution and maintenance.

10

TENA Disadvantages

Middleware works on only a limited set of Operating Systems/Compiler
combinations.

No standardized wire format (though a Wireshark plug-in does exist to give
users some transparency in what is being transmitted).

No ability to globally order events (i.e., does not support "HLA Time
Management”) or transfer of ownership of objects.

Not an international (commercial) standard (but a government standard).

The Middleware API requires object-oriented thinking by users (a disadvantage
only to those users who think functionally).

Limited tools exist for defining/deploying an event (except for OM tools).
Software is not available as open source.

Limited capability to function on unreliable networks.

11

Lessons for Your Events

e Use the most capable interoperability architecture
when judged by your own requirements

e Use multiple architectures connected with gateways
only when that is the most cost-effective solution, and
the use of the gateways will not compromise your

event

e Remember that interoperability architectures only
solve half the battle. Smart event design and
knowledge of distributed communication issues are

still required.

12

	IITSEC 2018 Live –Virtual-Constructive (LVC) Interoperability Techniques PART 1 of 7
	IITSEC 2018 Live –Virtual-Constructive (LVC) Interoperability Techniques PART 2 of 7
	IITSEC 2018 Live –Virtual-Constructive (LVC) Interoperability Techniques PART 3 of 7
	IITSEC 2018 Live –Virtual-Constructive (LVC) Interoperability Techniques PART 4 of 7
	IITSEC 2018 Live –Virtual-Constructive (LVC) Interoperability Techniques PART 5 of 7
	IITSEC 2018 Live –Virtual-Constructive (LVC) Interoperability Techniques PART 6 of 7
	IITSEC 2018 Live –Virtual-Constructive (LVC) Interoperability Techniques PART 7 of 7

