
Randy Saunders & Ed Powell
30 November 2018

Live-Virtual-Constructive
Interoperability

Techniques

Agenda

0800-0815 Introduction Saunders
0815-0840 LVC Integration – The Issues Powell
0840-0900 DIS Powell
0900-1000 HLA Saunders
1000-1015 break
1015-1115 TENA Powell
1115-1145 Future Possibilities Saunders
1145-1200 Summary/Recommendations

2

28-Nov-18

Introduction

§ What is Live-Virtual-Constructive (LVC) Interoperability?
§ Why should you want it?
§ What’s the problem?

3

28-Nov-18

4

28-Nov-18

3

USJFCOM

UNCLASSIFIED

ConstructiveConstructive

LVC Interoperability

Why is LVC Interoperability Important?

5

28-Nov-18

§ Limitations on Live Opportunities
§ High cost for a large force, both manpower and equipment.
§ Joint operation requires more players, OOTW even more so.
§ Environmental factors are beyond control.

§ Limitations on Virtual Simulation
§ High cost for a large force, both manpower and equipment.
§ Joint operation requires more players, OOTW even more so.
§ Verification and Validation efforts required to establish

confidence.
§ Limitations on Constructive Simulation
§ Verification and Validation efforts required to establish

confidence.
§ Representation of human behavior is beyond the current state-

of-the-art in computer science.

6

28-Nov-18

1

USJFCOM

UNCLASSIFIED

The LVC Architecture Issue
n Current LVC environments are not inherently

interoperable.
¨ High Level Architecture (HLA) and Distributed Interactive Simulation (DIS)

are most often used for integrating virtual and constructive assets,
¨ Test & Training Enabling Architecture (TENA) is widely used in testing and

to integrate live assets into exercises/events.
¨ Common Training Instrumentation Architecture (CTIA) promotes

commonality among the U.S. Army's instrumented ranges and home
stations; LVC - Integrated Architecture (LVC-IA) is next-generation Army
multi-echelon, integrated, joint, training and mission rehearsal
environment;

n Multiple protocols, gateways, and object models are
often used to bring an LVC Environment together.
¨ Interoperability and efficiency issues arise when bringing disparate

protocols and entities together in a common operational environment.
¨ Complexity, disconnects, duplication of effort, risk, and costs increase with

multiple architectures.

At least four communities agree; critical review needed to
develop way forward for efficient, effective interoperability.

A Framework for Interoperability

7

28-Nov-18

§ Technical
§ Define an architecture (or set of integrated architectures) that can

support the coherent runtime exchange of information among
cooperating simulations

§ Process
§ Technical - Define a robust technical operations model that identifies

the time-sequenced set of activities and tasks necessary to achieve a
desired level of interoperability

§ Business - Create an effective, efficient business operations model to
ensure the availability of supporting software/data infrastructure

§ Standards
§ Define opportunities for architecture, process, software, and data

standards to facilitate cooperative development

Distributed Simulation Engineering
and Execution Process (DSEEP)

8

28-Nov-18

§ New SISO/IEEE-sponsored initiative to define a common systems engineering
approach to the development of distributed simulation environments (IEEE P1730)

§ Defines a standard systems engineering methodology for all distributed
simulation users

§ Includes architecture-specific views of the standard process
§ DIS, HLA, TENA

§ Initially based on HLA FEDEP, but working group includes a very wide user base
§ All affected architectures
§ International participants

§ Multi-Architecture Overlay (DMAO) developed to address LVC concerns

Corrective Actions / Iterative Development

65431

Perform
Conceptual

Analysis

2

Analyze
Data and
Evaluate
Results

7

Define
Simulation

Environment
Objectives

Design
Simulation

Environment

Develop
Simulation

Environment

Plan,
Integrate,
and Test

Simulation
Environment

Execute
Simulation

Environment
and Prepare

Outputs

Corrective Actions / Iterative Development

65431

Perform
Conceptual

Analysis

2

Analyze
Data and
Evaluate
Results

7

Define
Simulation

Environment
Objectives

Design
Simulation

Environment

Develop
Simulation

Environment

Plan,
Integrate,
and Test

Simulation
Environment

Execute
Simulation

Environment
and Prepare

Outputs

DSEEP (Step 4 Expanded)

9

28-Nov-18

Implement Simulation
Environment

Infrastructure 4.4

Supporting Resources

Scenario(s)
2.1

Modified/new Members 5.2
(New)
Object
Model

Simulation
Environment
Agreements

5.1,5.2,5.3,6.1

Data
Dictionary
Elements

Supporting Databases 5.2

List of
Selected
(existing)
Members

3.1

Implemented
Simulation

Environment
Infrastructure 5.2

Existing
Object
Models

Develop
Object Model

4.1

Establish Simulation
Environment

Agreements 4.2

Implement Member
Designs 4.3

Scenario Instance(s) 5.1

Object
Model

Libraries
Data

Dictionaries

Other
Resources

Existing
Object
Models

Member
Interfaces

Simulation
Environment

Design
3.2

Simulation
Environment
Development

and
Execution

Plan
3.3

Object
Model
5.1,5.2

Simulation
Environment

Requirements
2.3

Conceptual
Model

2.2

Member
Designs

3.2

Implement Simulation
Environment

Infrastructure 4.4

Supporting Resources

Scenario(s)
2.1

Modified/new Members 5.2
(New)
Object
Model

Simulation
Environment
Agreements

5.1,5.2,5.3,6.1

Data
Dictionary
Elements

Supporting Databases 5.2

List of
Selected
(existing)
Members

3.1

Implemented
Simulation

Environment
Infrastructure 5.2

Existing
Object
Models

Develop
Object Model

4.1

Establish Simulation
Environment

Agreements 4.2

Implement Member
Designs 4.3

Implement Member
Designs 4.3

Scenario Instance(s) 5.1

Object
Model

Libraries

Object
Model

Libraries
Data

Dictionaries
Data

Dictionaries

Other
Resources

Other
Resources

Existing
Object
Models

Member
Interfaces

Simulation
Environment

Design
3.2

Simulation
Environment
Development

and
Execution

Plan
3.3

Object
Model
5.1,5.2

Simulation
Environment

Requirements
2.3

Conceptual
Model

2.2

Member
Designs

3.2

Federation Engineering Agreements
Template (FEAT)

§ SISO recently finalized a standardized XML template for
representing federation agreements.

§ Existing agreements from a dozen large, multi-architecture
federations were examined and included in the schema.

§ An initial tool for editing an agreements document in the standard
form has been produced and is available as open source at:
http://sourceforge.net/p/feateditor/

10

11/28/18

Architectural Implications

§ DSEEP encourages engineering in a loosely-coupled architecture
§ The Design (3), Develop (4), and Integrate (5) steps can be done

in an iterative manner.
§ Technical characteristics to examine
§ Distributed architectures exploit additional computers while

using the network to reduce coupling
§ Existing simulations can be reused or adapted to new scenarios
§ Connections can bridge the differences between simulations

11

28-Nov-18

Simulation Integration:
Live, Virtual, and Constructive (LVC)

What this means and why?

Dr. Edward T. Powell
epowell@tena-sda.org

2

Terms

l A “model” is a simplified mathematical representation of
a real-world object
l A selective re-creation of reality based on the creator’s objectives and

evaluations as to which aspects of reality are important to the purpose of
the model

l Two completely different models of a given system may both be right,
because they serve different objectives

l A “simulation” is a mechanism for evolving a model or
set of models over time

3

Model

Reality Model

Model Name

Constant
Attributes

Variable
Attributes

Algorithms

Algorithm
Parameters

Model
Attribute
Database

Algorithm
Parameter
Database

Abstraction
Simplification

Objectives
Purpose
Evaluation

4

Models Interacting

l When Models interact with one another, they generally don’t
allow direct access to their attributes by other models
l They create a “public face”, consisting of that subset of their attributes they

allow other models to read
l They have basic input and output functions, usually including logging
l They have an API to send and receive messages

Model B

Constant
Attributes

Variable
Attributes

Algorithms

Algorithm
Parameters

Model
Attribute
Database

Algorithm
Parameter
Database

Model A

Constant
Attributes

Variable
Attributes

Algorithms

Algorithm
Parameters

Model
Attribute
Database

Algorithm
Parameter
Database

Public Face
Attributes

API

Input Output
Log

Screen Public Face
Attributes

API

Input Output
Log

Screen

API Call to do something or get info

5

Types of Models in Military
Simulation

l Sensor Models (Optical, Radar, IR, etc.)
l Vehicle Movement Models (over land, air, sea, under sea)
l Weapons Flyout Models
l Weapons Effects Models
l Command and Control Models
l Human Behavior Models
l OODA-Loop Models (observe, orient, decide, act)
l Perceived Truth Models
l Engineering-level System and Subsystem Models

l Model of the Environment (land, sea, undersea, air, space)
l Called “Synthetic Natural Environment”
l Critical for doing intervisibility calculations (are two entities within line-of-

sight?) and detection calculations (did one entity detect another?)

6

l Creating a simulation requires the addition of:
l Simulation Engine to manage the advancement of time and inter-model

communication
l The addition of a model of the Environment

l The Environment is special – almost all models rely on
the environment model

Simulation Engine
Manages Advancement of Time

Manages Inter-Model Communication
Manages interaction with the Synthetic Natural Environment Model

Constructing a Simulation

Model A Model B Model C Model D Environment

7

Simulation Engines

l There are many simulation engines available for use
l Many different features beyond the required ones
l Many different mechanisms for advancing time
l Many add a “modeling framework” that constrains developers to develop

models in a certain way

l Examples
l OneSAF
l Flames
l SPEEDES/WARP IV
l Open Game World
l Unreal
l Delta3D
l Many, many others

8

Simulation Systems Can Provide Many Services
Beyond the Basics, e.g., OneSAF

9

Types of Military Simulations

l Aggregate simulations model military units as a single
aggregate thing, which only interacts with other
aggregate things

l Entity-level simulations model military systems at the
vehicle and munition level (usually), entities interacting
with each other.

l Engineering-level simulations model the individual
components of a vehicle/munition system separately,
usually to perform engineering analysis

10

Distributed Simulations

l A distributed simulation is one in which multiple
simulations are run on multiple computers connected by
a network.

l Homogeneous distributed simulation – the same
simulation is run on all computers (e.g., OneSAF)

l Heterogeneous simulation – different simulations,
usually developed by different development agencies or
contractors, and usually containing different
assumptions, purposes, and different simulation
engines, are run on separate computers.
l A set of heterogeneous simulations is called a “federation” of

simulations

11

Types of Distributed Simulation

l “Live” – uses operational personnel and
hardware (real aircraft, real ships, real
tanks)

l “Virtual” – uses operational personnel with
equipment that is not operational but
preserves operational user interfaces (flight
simulator, tank simulator)

l “Constructive” – pure computer programs,
either controlled by human operators
(“semi-automated forces”) or run entirely
without human intervention (“closed”)

l There is nothing magical about these
classifications, and some simulations may
fall into zero or two of these categories

Live

Virtual

Constructive

12

Public Data Structures and APIs for
Distributed Simulation

l Just like models, entire simulations have a “public face”: the set
of data structures and APIs about their models that they make
available to the rest of the world
l We call these public data structures and APIs “object models” for historical reasons
l All of them together represent the “Federation Object Model” for that federation

l Simulations can only interoperate to the extent that they share a
common set of public data structures and APIs (object models)

Simulation Engine A

Model A Model B Model C Model D Environment

Simulation Engine B

Model A Model B Model C Model D Environment

Object Model D Object Model E Object Model D Object Model F

13

Common Communication Mechanisms
for Distributed Simulations

l Simulations can only communicate if:
l They have a common language to talk with (common object models)
l They share the same mechanism for encoding this information for transport

(data transport software library, also called Middleware)
l The use the same network protocols.

Data Transport Library

Simulation Engine A

Model A Model B Model C Model D Environment

Simulation Engine B

Model A Model B Model C Model D Environment

Object Model D Object Model E Object Model D Object Model F

Data Transport Library

Network Packet

Network

Network Packet

14

Integrating Independently
Developed Simulations

l Generally these simulations are not built with a
knowledge of each other

l Built by different contractors with different fidelities
for different purposes

l Not akin to anything in the commercial world
l Different environment models

It can’t be stressed enough that simulations with different
models of the environment generally do not play fairly
together. Great care must be taken to ensure that their
environment models are similar enough to achieve the

event’s objectives.

15

Standardization Options

1. Standardize at the model “public
face” and have everything common
below (e.g., OneSAF)

2. Standardize at the Simulation
engine and below (e.g., SPEEDES)

3. Standardize at the public data
structures and APIs (object models)
and below (e.g., HLA and TENA)

4. Standardize at the Data Transport
Library and below (e.g., VRLink)

5. Standardize at the network packets
only (e.g., DIS)

Data Transport Library

Simulation Engine A

Model A Model B Model C Model D Environment

Object Model D Object Model E

Network Packet

1

2

3

4

5

The “higher up” standardization occurs:
• The more reuse there is
• Integration can be simpler
• Interoperability can be greatly improved

But:
• Simulation developers are more constrained in what they can do
• The initial costs are much higher and the risk of failure is greater (JMASS)

16

Live, Virtual, Constructive
Integration

l The ability to integrate simulations from each of the
three areas.

l Extremely tricky due to the unforgiving nature of live
systems (hard real time constraints)

l Some questions
l What does is mean to integrate multiple independently-created

simulations?
l What architecture(s) should you use to actually do the integration?
l Does it work?
l What are the known issues?

17

LVC Integration Issues

l Issues can be divided up into categories
l Fair Fight

l Terrain Correlation between different L/V/C sims when the sims
interact with each other

l Integrating live sensor systems with simulated entities (e.g., ACES)
l Integrating live and simulated C4I (messages, voice, video)

l Software Connectivity
l Time synchronization (NTP? GPS? HLA/TENA �Time Management�)
l Bandwidth management (L/V/C interactions/messages within network

limits)
l Object Model and network transport protocol incompatibility

l Hardware Connectivity
l Bridging multiple security domains

18

Differences Between L, V, and C
Simulations in a Few Categories

Constructive .
Closed

Simulated
Simulated
Simulated
Simulated
Simulated
Simulated
Simulated
Simulated

Logical

Item
Individuals
C4 Systems

Sensors
Vehicles

Weapons
EW

Cyber
Environment

Time

SAF
Real/Sim

Simulated
Simulated
Simulated
Simulated
Simulated
Simulated
Simulated

Real

Virtual
Real

Real/Sim
Simulated
Simulated
Simulated
Simulated
Real/Sim

Simulated
Real

Live
Real
Real
Real
Real

Real/Sim
Real/Sim
Real/Sim

Real
Real

To understand the magnitude of the problem, one needs to
understand all of the interactions between all of the items on this

chart and manage them so as to produce as fair a fight as
possible, for both test and training.

LVC
Both
Both
Both
Both
Both
Both
Both
Both
Real

19

Call of Duty

20

World of Warcraft

21

What Military Simulation Integrators Do

22

PITCH - Multicast
DI - Broadcast

SEASSEAS

SAFE

CBSIM

SLAMEMSLAMEM

Integrating Independently Developed Simulations -
Urban Resolve 2015 SIM Architecture Example

DIS - Multicast

CCD16

FUSION CTR

WAN to SITE

CONNECTION

SUFFOLK DTRABELVOIR

SPAWAR

MAUI

IMP

WRIGHT PAT

CULTURECULTURE

IMPIMPIMP

JSAFJSAFJSAF

CULTURE

GORDON

SSP

C4I GW

TRACKDB

IMPIMP

CULTURECULTURE

JSAFJSAF

IMP

JSAF

CULTURE

JSAFJSAFJSAF

STEALTH

IMPIMPIMP

JSAFJSAFJSAF

SLAMEM

STEALTHSTEALTHSTEALTH

MARCI

FAARS

IMPIMPIMP

JSAFJSAFJSAF

STEALTH

DT/J

PENTAGON

STEALTH

IMP

WALTS

SAFE

OASES

CBSIM

NWC

IMPIMPIMP

JSAFJSAFJSAF

STEALTH

ASTiASTi
OF OTBOF OTBOF OTBKNOX

TACSIM

JSAF

CAD

SEAS

EFS

DIS GWDIS GWDIS GW

DIS GW B2

EL SEGUNDO

AF-TM

AF-AD

DIS GW2
AF-AT1

IMPIMPIMP

DIS GW

SAFE

SA MC2

xN

ASTiASTi
OF OTBOF OTBOF OTB

EFS

DIS GW
SA MC2

BENNING

ASTiFIRESIM EFS

DIS GW
SA MC2

SILL

ASTiEADSIM EFS

DIS GW
SA MC2

BLISS

ASTiATCOM EFS

DIS GW
SA MC2

RUCKER

ASTi

SLAMEM/A

EFS

DIS GW

SA MC2 JEMS

HUNTSVILLE

RTIS - UNICAST

AF-AT2

23

Integrating Independently Developed Simulations -
Distributed Test Event 5 / Multi-Service Distributed Event

Example

24

Four Main Distributed Simulation

Integration Strategies

l Custom integration
l Most costly in both the short run and the long run

l May meet customer requirements better (but probably doesn’t)

l Creates stovepipe

l Distributed Interactive Simulation (DIS) protocols
l Widely used

l International Standard

l Large set of “object models” (PDUs) defined

l Free open-source software libraries available

l Constrains developers into a single simulation paradigm

l High Level Architecture for Modeling and Simulation (HLA)
l International Standard

l Contains more functionality and flexibility than DIS

l Only available commercially

l Test and Training Enabling Architecture (TENA)
l Government-sponsored open standard

l Contains much more functionality to help developers than HLA or DIS

l Enforces data contracts using the software language compiler – can’t make data contract

mistakes

l All software and support are free to users

25

Conclusions About Integrating
Disparate LVC Simulations

l Ideally, integrating disparate simulations would entail
l One integration architecture

l One world-view

l One integration contractors

l Unfortunately, it’s almost always:
l Different vendors/contractors

l Different world-views

l Different integration strategies/protocols supported

l Options:
l Rewrite some simulations

l Use gateways from HLA ßà DIS ßà TENA ,etc.

l Lose fidelity

l Lose measurable fair fight

l Live with imperfection

l Accept that multi-architecture events are the norm
l Bring in the right systems engineering team

26

Some Pointers From An Engineer
l You will never have decent requirements to start from. Consider yourself lucky

if you actually get them in writing.
l Your requirements will change halfway through your project.
l No two individuals will ever agree on what data structures should be used.
l If you ever need a common tool, there are at least 15 that will do almost what

you need. None of them will do what you need though. You'll have to change
what you need or build a 16th tool.

l Communication issues are always your software’s fault, even when the
network is broken.

l There is never a reason why network issues get fixed. The network just
magically starts working after enough complaints are sent to the network
engineers. But there was never anything wrong that anybody can point to.

l System administrators will always need a certification to run your software on
their machines. Nobody will ever know where this certification is supposed to
come from or how one might obtain it.

l There's always at least one STIG that would completely prevent any progress
in any DoD event. Therefore, general DoD guidelines are to never make
progress using computers.

l If you ever answer a question about the numerous bizarre protocols you will
work with, you're now considered SME on that subject (there aren't that many
of us evidently). Be very careful what questions you answer or you might find
yourself giving a training in that subject in a few years.

27

References
l Andreas Tolk, ed. et al., Engineering Principles of Combat Modeling

and Distributed Simulation, Wiley, 2012

l Richard M. Fujimoto, Parallel and Distributed Simulation Systems,
Wiley, 2000

l Douglas Schmidt et al., Pattern Oriented Software Architecture
Volume 2: Patterns for Concurrent and Networked Objects, Wiley,
2000

l IEEE Standards for HLA
l http://standards.ieee.org/findstds/standard/1516-2010.html
l http://standards.ieee.org/findstds/standard/1516.1-2010.html
l http://standards.ieee.org/findstds/standard/1516.2-2010.html

l IEEE Standards for DIS
l http://standards.ieee.org/findstds/standard/1278.1-2012.html
l http://standards.ieee.org/develop/project/1278.2.html

l TENA Documentation, Compliance, Software Downloads, Repository
l http://www.tena-sda.org/
l https://www.tena-sda.org/display/intro/TENA+Compliance+Specification
l http://www.tena-sda.org/repository/

http://standards.ieee.org/findstds/standard/1516-2010.html
http://standards.ieee.org/findstds/standard/1516.1-2010.html
http://standards.ieee.org/findstds/standard/1516.2-2010.html
http://standards.ieee.org/findstds/standard/1278.1-2012.html
http://standards.ieee.org/develop/project/1278.2.html
http://www.tena-sda.org/
https://www.tena-sda.org/display/intro/TENA+Compliance+Specification
http://www.tena-sda.org/repository/

Distributed Interactive
Simulation (DIS)

Shamelessly Stolen
and (Slightly) Modified from

Mark McCall, DIS PDG Chair, markmccall@sisostds.org
Don McGregor, NPS, mcgredo@nps.edu

mailto:markmccall@sisostds.org
mailto:mcgredo@nps.edu

Overview

lGeneral DIS Overview
l DIS History
l DIS Documents
l Key Definitions and Concepts
l PDU Families

lThe Updated DIS Version 7 Standard
l IEEE 1278 Update History
l General standard improvements
l PDU-specific improvements and new PDUs
l Annexes

Distributed Interactive
Simulation (DIS)

l Distributed Interactive Simulation (DIS) :
l Time and space coherent synthetic representation of world

environments
l Designed for linking the interactive, free-play activities of people in

operational exercises
l Synthetic environment is created through real-time exchange of data

units between distributed, computationally autonomous simulation
applications

l Computational simulation entities may be present in one location or
may be distributed geographically

l DIS defines standard Protocol Data Units (PDUs)
l Syntax (format) and semantics (rules) for data exchange and

simulation interoperability
IEEE Std 1278.1-2012

DIS History

l August 1989 – First DIS Workshop
l Decided to develop DIS using SIMNET as core protocol

l March 1993 – IEEE Std 1278 approved
l Sept 1995 – IEEE Std 1278.1 revision approved
l 1997 – DIS Workshops replaced by SISO & SIWs
l March 1998 – IEEE Std 1278.1a addendum approved
l 2002 – IEEE 1278.1/1a Reaffirmed
l 2012 – IEEE 1278.1-2012 Passed (DIS Version 7)
l Currently working on DIS 8.

DIS Documentation
Relationships

Distributed Interactive
Simulation standards,

recommended
practices, and related

documents

IEEE Std 1278.1-
2012

Standard for DIS
—

Application
Protocols

SISO-REF-010 Enumerations for Simulation Interoperability

IEEE 1278.2-1995
Standard for DIS

—
Communications

Services and
Protocols

IEEE 1278.3-1996
Rec. Prac. for DIS

—
Exercise Mgt. and

Feedback

IEEE 1278.4-1997
Rec. Prac. for DIS

—
Verification,

Validation, and
Accreditation

Key DIS Concepts

l No central computer controls the entire simulation
exercise

l Autonomous simulation applications are responsible for
maintaining the state of one or more simulation entities

l A standard protocol is used for communicating ground
truth data

l Changes in the state of an entity are communicated by its
controlling simulation application

l Perception of events or other entities is determined by
the receiving application

l Dead reckoning algorithms are used to reduce
communications processing

Key DIS Definitions

l Simulation entity:
l A physical object in the synthetic environment that is created and

controlled by a simulation application and affected by the exchange of
DIS PDUs

l It is possible that a simulation application may be controlling more than
one simulation entity

l Protocol Data Unit (PDU)
l A message containing information about the virtual world
l Sent from one participant to one or more other participants
l Encoded as a UDP packet on the network in a specific format

IEEE Std 1278.1-2012

DIS Messages

PDU

Entity Information

Entity State Collision

Warfare

Fire Detonate

…

Several dozen different messages (called Protocol Data
Units, or PDUs) to describe entity movement, collisions,
combat, radio communications, logistics, and more. The
Entity State PDU is the most widely used

PDU Families

l Entity information/interaction
l Warfare
l Logistics
l Simulation Management
l Distributed Emission Regeneration
l Radio Communications
l Entity Management
l Minefield
l Synthetic Environment
l Simulation Management with Reliability
l Live Entity
l Non-Real Time protocol
l Information Operations

PDU Families (Cont)

l Entity information/interaction
l Appearance of an entity
l Location of an entity
l Entity collisions
l Attribute PDU (Version 7)

l Warfare
l Weapons
l Expendables
l Explosions
l Fire/Detonate
l Directed Energy (Version 7)
l Entity Damage Status (Version 7)

DIS: API

l DIS doesn’t have an API. This seems strange to people
coming from HLA or TENA, but reflects common practice
in networking protocols

l The standardized part is the format of the messages on the wire. The
standard is silent about how to create or receive those messages

l Different DIS vendors have different APIs, but all produce the same
format messages. This is in contrast to HLA, which has a standard
API, but is silent about the format of messages on the wire. As a
result, different HLA RTI vendors usually use different message
formats for exchanging information

l TENA standardizes the API, and there is a single approved
implementation of the RTI equivalent; this sidesteps the wire standard
problem because there is only one approved RTI equivalent

DIS Example - Send ESPDUs
in Java

Entity Coordinates

l Geocentric Coordinates
l Position and Orientation

l WGS-84 elliptical Earth model
l Units in meters and radians

Entity Type Identification

ENTITY TYPE RECORD

Entity Kind 8 bit enumeration

Domain 8 bit enumeration

Country 16 bit enumeration

Category 8 bit enumeration

Sub Category 8 bit enumeration

Specific 8 bit enumeration

Extra 8 bit enumeration

• Hierarchical designation of Entity Type
• Enumerations are listed in SISO-REF-010

• Over 13,000 entity types

Examples of Type
Enumerations

Kind Domain Country Category Sub
Category

Specific Extra

F-15C 1 2 225 1 5 3 -

F-15E 1 2 225 1 5 5 -

MiG-27K 1 2 222 2 1 2 -

M1A2
Abrams

1 1 225 1 1 3 -

T-72B 1 1 222 1 2 6 -

D 98 York 1 3 224 4 1 12 -

Mk 44
torpedo

2 7 225 1 9 - -

Entity Instance Identification

Site 16-bit unsigned
Application 16 bit unsigned
Entity 16 bit unsigned

n Combination of 3 numbers identify individual entities
and objects

n Exercises can assign site numbers, sites can assign
sims at the site, sims can assign entity numbers

Example: Entity
State PDU (part 1)

Example: Entity
State PDU (part 1)

Dead Reckoning and
Smoothing

l Entity sends update when error > threshold
l Receiver extrapolates between updates
l Spatial jump at update is smoothed over

Green Line: Internal Model (“truth”)

Red Line: Dead Reckoned (extrapolated) Model

White Line: Smoothing Model

DIS V7 - Extensive
clarifications

l New and improved rules
l Lessons learned from 15 years of use

l New standard is 747 pages
l The 1995 and 1998 standards combined were 330 pages

Even if you have no plans to use any of the new
features, the new standard is still extremely useful

Compatibility with Version 5/6

l Almost every change in the PDU formats and rules are
backward compatible with Version 5/6 PDUs

l Most changes are also forward compatible (i.e. Version 5
simulations can still make sense of Version 7 PDUs)

l Use of former padding fields
l New sims can add info, old sims ignore it

Protocol Extensibility

l DIS now more easily customized
l Corrects a weakness in the original standard
l Backward compatibility maintained mostly
l Variable Parameter Records

l Entity State, Detonation

l Standard Variable Records
l Transmitter, IFF, DE Fire, Entity Damage, IO

l Attribute PDU
l Can extend all other PDUs
l Or, info that doesn’t have a PDU

Variable Parameter Records

l The Articulated/Attached Parts record in the Entity State
and Detonation PDUs has been opened up for extension

l First 8 bits denotes record
l Other 120 bits is definable
l Still fixed at 128 bit length
l 3 new records so far
l Several ideas for other

appearance records

Entity Separation VP Record

Parameter Type
Designator

8-bit
enumeration

Reason for
Separation

8-bit
enumeration

Pre-Entity Indicator 8-bit enum

Padding 8-bits unused

Parent Entity ID 48-bit enum

Padding 16-bits unused

Station Location 32-bit enum

Five New PDUs

l Directed Energy Weapons
l Directed Energy Fire PDU
l Entity Damage Status PDU

l Information Operations
l IO Action PDU
l IO Report PDU

l Attribute PDU
l Adds extensibility to the DIS

standard

The Attribute PDU

l Allows existing PDUs to be extended without breaking
forward or backward compatibility

l The PDU contains sets of Attribute records
l Each set is tied to an entity or object

l Attribute records are open format Standard Variable
records

l Not allowed to contain information that already exists in
other PDUs

l Otherwise, there would be confusion about which PDU to use

DIS: Implementations

l Where can you get a DIS implementation?
l Write your own
l Buy one. There are several commercial implementations
l Use an open source version

l Open-DIS (http://open-dis.sourceforge.net)
l Java, C++, C#, Objective-C, Javascript

l KDIS (http://sourceforge.net/projects/kdis/)
l C++

l Aquaris (http://sourceforge.net/projects/aquariusdispdu/)
l C++

l JDIS (http://sourceforge.net/projects/jdis/)
l Java

26

http://open-dis.sourceforge.net
http://sourceforge.net/projects/kdis/
http://sourceforge.net/projects/aquariusdispdu/
http://sourceforge.net/projects/jdis/

New and Improved (in
progress) DIS V8

l The DIS Product Support Group at SISO is currently
evaluating changes for the next DIS Standard (DIS v8).

l Important changes to consider
l 64-bit structures and alignment
l Little Endian number transmission
l New timestamp representation
l Full implementation of PDU variable part structure from DIS v7

l Participation is open and input from all is welcomed.

Compatibility Between DIS
Versions

l Backward compatibility: New applications can process
old formats

l A version number in the protocol provides this
l The standard does not require this because we cannot enforce

requirements on user’s software applications

l Forward compatibility: Old applications can process new
formats

l Unusual because old applications can't predict the future
l DIS Version 5, 6, and 7 are mostly forward compatible
l PDUs were upgraded by adding new info to padding fields
l But, little padding remains available

l Gen3 (DIS 8) will break forward compatibility
l A clean-sheet design is necessary

Forward Compatibility
Beyond Version 8

l Rules for future PDU changes written in V8
l Allows V8 simulators to process V9 and later PDUs

l New Compatible Protocol Version field
l Indicates that a new version PDU is forward compatible

l PDU header can be expanded in later versions by adding
new fields at the end

l Rules tell older simulations how to skip over it using a new Header
Length field

l PDU body is partially extensible by adding extra padding
in V8

l The fixed body could use the same length trick as the header, but it
doesn’t

l A little extra padding in every PDU is simpler
l Variable Records can also be used for expansion

DIS 8 Proposed Entity State
PDU

Some Other Requested
Improvements

l PCR 276 – Data Representation
(Eliminate Endian conversion)

l PCR 262 – Simpler voice
communications

l PCR 217 – Digital Messaging
l Remove redundant and unused

PDUs
l PCR 130 – Redesigned

Designator PDU
l Support for Higher Fidelity SIMs

l PCR 267 – Header
l PCR 257 – Improved Timestamp

l 64-bit integer includes year,
day, hour, etc., with
microsecond resolution

l PCR 258 – Sequence Number to
detect dropped PDUs

l PCR 260 – Geodetic
Coordinates

l PCR 261 – Combine
Entity/Object to avoid ambiguity

l PCR 233 – Machine-readable
XML Syntax Language

Bibliography

l SISO: http://sisostds.org
l SISO DIS Protocol Support Group:

http://discussions.sisostds.org/topiclistview.aspx?fid=32
l Open-DIS: http://open-dis.sourceforge.net
l SEDRIS SRM: http://sedris.org
l MaK: http://www.mak.com
l Kdis: http://kdis.sourceforge.net
l Wireshark: http://wireshark.org
l WebGL: http://www.khronos.org/webgl/
l X3D: http://www.web3d.org http://x3dgraphics.com/slidesets
l WebLVC: http://discussions.sisostds.org/topiclistview.aspx?fid=256
l WebSockets: http://tools.ietf.org/html/rfc6455 ,

http://www.w3.org/TR/websockets

32

http://sisostds.org
http://discussions.sisostds.org/topiclistview.aspx?fid=32
http://open-dis.sourceforge.net
http://sedris.org
http://www.mak.com
http://kdis.sourceforge.net
http://wireshark.org
http://www.khronos.org/webgl/
http://www.web3d.org
http://x3dgraphics.com/slidesets
http://discussions.sisostds.org/topiclistview.aspx?fid=256
http://tools.ietf.org/html/rfc6455
http://www.w3.org/TR/websockets

Live-Virtual-Constructive
Interoperability

Techniques: HLA
Randy Saunders

2

28-Nov-18

Agenda

§ The High Level Architecture (HLA) Technology
§ Rules of the Road
§ Run-Time Infrastructure (RTI)
§ Object Modeling

§ Model Reuse
§ HLA Future Growth
§ HLA Evolved Adoption
§ What Comes Next

3

28-Nov-18

HLA Technology

§ HLA technology is open architecture, free-to-use, defined in
open international Standards under IEEE.
§ IEEE Std 1516-2010 Framework and Rules
§ IEEE Std 1516.1-2010 Federate Interface Specification
§ IEEE Std 1516.2-2010 Object Model Template (OMT)

§ Commercial suppliers provide software which implements
the Interface Specification and tools to facilitate the
manipulation of HLA Object Models.

§ Migration plans and tools are available to enable transition
from legacy HLA 1.3 implementations.

4

28-Nov-18

HLA 1516 Framework and Rules

5 Rules for Federations

1. Federations shall have an HLA Federation Object Model

(FOM), documented in accordance with the HLA Object

Model Template (OMT).

2. In a federation, all simulation-associated object instance

representation shall be in the federates, not in the runtime

infrastructure (RTI).

3. During a federation execution, all exchange of FOM data

among federates shall occur via the RTI.

4. During a federation execution, federates shall interact with

the RTI in accordance with the HLA interface specification.

5. During a federation execution, an instance attribute shall

be owned by at most one federate at any given time.

5

28-Nov-18

HLA 1516 Framework and Rules

5 Rules for Federates

6. Federates shall have an HLA Simulation Object Model (SOM),
documented in accordance with the HLA Object Model Template
(OMT).

7. Federates shall be able to update and/or reflect any attributes and
send and/or receive interactions, as specified in their SOMs.

8. Federates shall be able to transfer and/or accept ownership of
attributes dynamically during a federation execution, as specified in
their SOMs.

9. Federates shall be able to vary the conditions (e.g., thresholds)
under which they provide updates of attributes, as specified in their
SOMs.

10. Federates shall be able to manage local time in a way that will allow
them to coordinate data exchange with other members of a
federation.

6

28-Nov-18

Distributed Architectures

§ Existing architectures (DIS, HLA, and others) share the distinction
between the Runtime Infrastructure, the Interface, and the simulation

Live
Participants

Data Collectors,
Viewers, etc.

Interface

Simulation
Surrogates

Runtime Infrastructure

Simulations

C4ISR

DIS HLA
Runtime
Infrastructure Multicast UDP/IP Commercial RTI

Application
Interface

IEEE 1278
Data Units

IEEE 1516
Programmer API

7

28-Nov-18

HLA Capabilities

§ Existing architectures have built
feature sets that provide for a
broad spectrum of capabilities.

§ Base studies have shown that
some features are used much
less often than others.

HLA

Information management

Ownership
transfer

QOS
options

Event
ordering

Pass interactions

Save & Restore

Synchronize

Multiple message types

DIS - The core
Initialize a
federation

Resign

8

28-Nov-18

HLA Object Modeling

§ An HLA Object Model (FOM or SOM) is not directly relatable to
Object-Oriented (OO) software technology.
§ HLA interfaces do NOT require the use of an OO programming

language, and they do not exploit OO if used with one.
§ HLA Object Models generalize the standardized object model

concepts of DIS, and provide structure for optimizing them.
§ DIS had a static data concept, entities had fixed attributes and

interactions communicated through a set of Standard messages.
§ HLA provides a mechanism for defining attributes and

interactions communicated through Standard API calls.
§ With an OO programming language the objects created have

attributes and interactions which are directly used in code
statements to form programs.

9

28-Nov-18

HLA Object Model Information Content

§ HLA object
models are a
compromise
between existing
models and
future models
produced in
object-oriented
languages.

§ OO programs
can abstract HLA
object model
constructs in a
few language
classes.

?

Object Model (UML)

Relational Data Model (IDEF1X)

HLA-OMT

Additional
Software
or Metadata
needed

DIS Simulated
Entities

Common
Usage

Dr. Andreas Tolk 00S-SIW-024

?

Future
Usage

10

28-Nov-18

Model Reuse through HLA

§ DSEEP step 3 considers reuse opportunities by examining how
existing components can be composed to construct a federation.

§ Two composition techniques, commonly referred to as
aggregation, are employed in HLA.

§ The effectiveness of composition can be limited by monolithic
simulations that do not expose component attributes or scale
instances efficiently.

Model Aggregation Entity Instance Aggregation

Aggregation Types

Paul Gustavson (Simventions)

11

28-Nov-18

Reuse Opportunities and Enablers

§ The DIS data model represents a set of common features.
§ Standardized representation in HLA through the RPRFOM
§ Standardized representation in TENA through TSPI LROM

§ Within an architecture, new models can plug in and establish
an initial operating capability.

§ Between related architectures a bridge can handle conversions
and mapping between simulation representations.

Data Collectors,
Viewers, etc.

Simulation
Surrogates

Runtime Infrastructure

Simulations Data Collectors,
Viewers, etc.

Simulation
Surrogates

Runtime Infrastructure

Simulations

Bridge

12

28-Nov-18

HLA Future

§ HLA 1.3 is still in use, like DIS, for connection to legacy federates
with this interface.

§ HLA 1516-2000 is one active deployment area, commercial
production products are available.

§ HLA 1516-2010 (HLA-Evolved) incorporated dozens of new
features such as fault tolerance, rate control, and modular object
models based on user experiences with HLA. This is the HLA you
should be using!

§ The IEEE P1516 Working Group is currently holding meetings and
incorporating comments to revise the Standards for the next
version of HLA.

§ Future directions are set and funded by HLA users.

13

28-Nov-18

Sample Feature #1 - Update Rate Control

§ Federates often have different processing rates, and thus different
data needs.
§ Prior HLA versions could burden a low data rate subscriber with

discarding updates that were not needed.
§ This results in wasted processing time and network bandwidth

along the link to the low data rate subscriber.
§ The RTI handles this situation and sends only needed updates.

RTI

Slow
Subscriber

Fast
Subscriber Publisher

Subscribe
Low (1 Hz)

Subscribe
High (10 Hz)

TurnUpdatesOn
High (10 Hz) Update @

10 Hz
or higherReceive @

10 Hz
Receive @

1 Hz

14

28-Nov-18

Sample change #2 - Modular FOMs

§ HLA FOMs were always modular, but only through copying data
from SOMs or other sources into a new FOM.
§ The RTI now loads FOM modules incrementally, reducing

duplication and FOM distribution logistics.

HLAbase
Object & Interaction Roots, Predefined Data Types, etc

Real Time
Reference Platform

(Standard) FOM

Local RPR
Extension

My Federation
Management

Data Logger
Control

New Features being debated

§ Clarifications, explanations, and fixes to ambiguities
§ Simplified rules for switches and FOM merging
§ Relaxation of DDM rules under federate control
§ More general datatypes, including variable record structures

§ Instance-specific services/interactions
§ Fixed structure network protocol between Federate and RTI
§ Certificate based Federate authentication

§ Join the Working Group and make your needs known.

15

11/28/18

16

28-Nov-18

Practical Considerations

§ In designing a distributed solution, cost drivers include:
§ Infrastructure availability
§ Previous integration experience

§ Your developers
§ Your simulations

§ Tools for analysis, testing, and bridging
§ Available for your infrastructure
§ Standards for future evolution

§ Higher levels of conceptual interoperability require better
understanding of how the simulations represent the problem

§ Correspondingly higher levels of VV&A effort
§ Intellectual property provisions in the simulations, databases,

scenarios, and analysis tools

Future Directions – Up To You

§ SISO and the IEEE have re-opened the HLA standards
for revision.

§ If you join the SISO HLA group you will be able to help
identify what ideas are folded into the next version of
the standards.

§ Current topics include:

§ Service interfaces to HLA objects

§ Object-Oriented programming language objects
generated automatically from HLA SOM

§ Defined transport (DDS or something else) compatible
with DII COE

17

11/28/18

18

28-Nov-18

Questions

Randy Saunders
Johns Hopkins APL
+1.443.778.3861
<Randy.Saunders@jhuapl.edu>

1

JMETC and TENA

Dr. Edward T. Powell
TENA Architect

2

What are JMETC and TENA?

l A corporate approach for linking distributed facilities for test
and evaluation

l Enables customers to efficiently evaluate their warfighting capabilities in a
Joint context

l Provides compatibility between test and training
l A core, reusable, and easily reconfigurable infrastructure

l Consists of the following products:
l Persistent connectivity
l Middleware
l Standard interface definitions

and software algorithms
l Distributed test support tools
l Data management solutions
l Reuse repository

l Provides common joint testing process and customer
support team for JMETC products and distributed testing

JMETC Networks Using DREN
and SDREN

TENA Software,
Object Models,

Tools,
Repository

3

JMETC Provides an Agile Infrastructure for
Distributed Testing

4

Sampling of Test and Training
Assets Available on JSN

USSTRATCOM

4

China Lake:
F/A-18, IBAR

Eglin AFB: 46th Test
Squadron

Redstone

Pax River: Hawkeye,
Manned Flight simulator.

Dahlgren: Rapid SIL

Wallops Island : Ship Self-
Defense System

McLean MITRE: National
Security Experimentation

Laboratory

WSMR IRCC

WPAFB:
SIMAF

Ft Huachuca: JITC, JTRS, C4ISR

SPAWAR Systems
Center Pacific

Palmdale, Triton
NGC, Triton

Camp Pendleton

Edwards

Tinker AFB: AWACS

Greenville: Rivet Joint

Ft Hood:

TTEC, CTSF

5

JMETC SECRET Network (JSN)

l Focus is on persistent connectivity
l Standing Agreements

l All sites have valid Authority to Operate (ATO) and Authority to Connect
(ATC)

l Daily full mesh, end-to-end network characterization ensure optimized
performance

l On demand usage with little to no coordination necessary
l MOAs in place to authorize connections between all sites

l Persistency enables user to…
l Test capabilities early and often
l Execute unscheduled/unplanned testing whenever needed
l Focus on the test rather than the network

l Operates at SECRET Collateral
l Leverages SECRET Defense Research & Engineering Network (SDREN) for

connectivity
l Functional and growing since 2007

5

Customer time and dollars not spent on
infrastructure by leveraging JMETC

6

7

JMETC MILS Network (JMN)

l Focus is on providing secure distributed testbeds to support
unconstrained cyber activities and users access to
enterprise resources at multiple classifications

l Employs Multiple Independent Levels of Security (MILS)
architecture

l Allows for segregation of data
streams by protocol, system,
event, COI, etc.
l Capable of supporting

multiple simultaneous events
at multiple classifications
concurrently

l Ability to create isolated “sandboxes”
l Accredited by Defense Intelligence Agency (DIA) to operate from

Unclassified up to TS//SCI
l Included NSA Red Team assessment

Primarily Used for Cyber Testing

8

What is TENA?

l TENA is a software architecture to promote interoperability
and reuse for assets in the test and evaluation community.

l TENA provides a large number of software libraries and
tools to make creating distributed test events easier and
more reliable.

l Core Architectural Tenets of TENA
l Promote Computer Enforceable System Interfaces
l Utilize Auto-Code Generation to Raise the Abstraction Level
l Let Computer Detect Interoperability Errors as Early as Possible
l Design the Middleware to Make it Hard to Use Wrong
l Anticipate Better Techniques and Technologies
l Emphasize Live-Virtual-Constructive Interoperability

9

TENA Architecture Overview

Non-TENA Applications

Range
Resource

Application

Reusable
Applications

Analysis
Applications

Non-TENA Communications

TENA

Range Resource
Application

Data
Collectors

HWIL

Range
Resource

Application

Mission
Management

TENA
Object

TENA
Object TENA

Object

TENA Console

Object Model
Compiler

TENA Utilities

TENA Common Infrastructure

TENA Applications

Non-TENA
System

Non-TENA
System

IS R F orc e Mi x S tud y

Sh adin g is : Ph ase

6.2
6.0
5.4
4.8
4.2
3.6
3.0
2.4
1.8
1.2
0.6
0.0

TENA Tools

Gateway

TENA Middleware TENA
Repository TENA Middleware

Event
Data

Management
System

Planning
Utilities

Replay
Application

Sensors, instrumentation, display, control, safety, environment, processing

10

Benefits of TENA

l All TENA software and support is free to users
l Now supports both C++, Java, and .Net!
l TENA software is thoroughly tested and very reliable
l TENA Auto-Code Generation makes creating a TENA application as

simple as possible
l TIDE Tool manages installation and configuration, upgrading and maintenance
l Auto-generated starting points mean you never start with a blank page
l Rapid development of real-time, distributed, Live-Virtual-Constructive applications
l Auto-generated test programs make integration a snap

l TENA�s technical approach emphasizes cost savings and reliability
l The TENA software is hard to use wrong
l TENA catches many user errors at compile time rather than run time
l TENA Tools provide unprecedented understanding of an event

l TENA has a standard object model enhancing interoperability
l The TENA web site/repository has extensive documentation, training,

and collaboration capabilities
l TENA has a plan for evolution and funding to execute this plan!

11

TENA Objects
are Compiled In

l Why use compiled-in object definitions?
l Strong type-checking

l Don�t wait until runtime to find errors that a compiler could detect
l Performance

l Interpretation of methods/attributes has significant impact
l Ability to easily handle complex object relationships
l Conforms to current best software engineering practices

l How do you support compiled-in object definitions?
l Use a language like CORBA Interface Definition Language to define

object interface and object state structure
l Use code generation to implement the required functionality

l Thus the concept of the TENA Definition Language (TDL)
was created

l Very similar to IDL and C++

12

package Example {

};

file Example-Vehicle-v6.tdl

class Vehicle {

};

string name;

Team team;

float64 xInMeters;

float64 yInMeters;

How hard is it to create a new
TENA Object Model?

5. Define any remote or local
methods

enum Team {

Team_Red,

Team_Blue,

Team_Green };

optional

const

driveTo (float64 xInMeters,

float64 yInMeters);

4. Determine if any attributes are
constant or optional

3. Define the attributes that
characterize the messages and
objects

2. Define the message or object
types needed by the application

1. Name the object model, including
the version

TENA has a powerful meta-model for defining expressive
object models, yet descriptive models are easy to create

13

TENA Standard Object Models:
A Common Set of Data Definitions for the Entire Range Community

l Platform Related
l TENA-Platform-v4
l TENA-PlatformDetails-v4
l TENA-PlatformType-v2
l TENA-Embedded-v3
l TENA-Munition-v3
l TENA-SyncController-v1
l TENA-UniqueID-v3

l Time-Space Position Information (TSPI) Related
l TENA-TSPI-v5
l TENA-Time-v2
l TENA-SRFserver-v2
l TENA-Pointing-v1

l JNTC OMs (for Training)
l JNTC-AirRange-v2
l JNTC-CounterMeasure-v2
l JNTC-IndirectFire-v2
l JNTC-Instrumentation-v2
l JNTC-NBC-v2
l JNTC-ObstacleMinefield-v2
l JNTC-Threat-v2

l Others
l TENA-AMO-v2
l TENA-Engagement-v4
l TENA-Exercise-v1
l TENA-GPS-v3
l TENA-Radar-v3

l In Progress
l Range Instrumentation OM Suite
l TENA-AVstream
l TENA-LiftoffDetector
l TENA-Link16
l TENA-PowerController
l TENA-SpectrumAnalyzer
l TENA-Telemetry
l TENA-Waypoint
l TENA-Weather
l TENA-LVC-Emitter
l Additional JNTC OMs for training

14

TENA Repository

l Purpose: to contain all
reusable TENA data

l Current Repository Contents:
l All TENA Object Models, both standard and user-designed
l All TENA software (middleware, helpdesk cases, tools, gateways,

reusable applications, and reusable components)
l All TENA documentation
l Provide an easy-to-use secure interface to all of this information

l The Repository is a
collection of services and
technologies
based around a wiki-like
front end using REST and
XML-RPC

TENA Middleware EDMS

TENA Common
Infrastructure

TENA
Repository

Repository Server
Remote API Layer

Security Layer

Service Layer

Adapter Layer

XML-RPC Handler REST Handler

Security Interceptors Authentication
ServiceAuthorization Service

Aggregate Service

Index Service

Relationship Service

Attachment Service

Audit Service

Component Lock Service

Process Service

Persistence Service

Confluence Adapter Subversion Adapter

Confluence Server Subversion Server

Crowd
Server

Build
Server

Database
Server

15

TENA Middleware
Purpose and Requirements

l Purpose: high-performance,
real-time, low-latency
communication
infrastructure used by range resource
applications and tools during execution

l Requirements:
l Fully support TENA Meta-Model
l Be easy to use
l Be highly reliable
l Many varied communication strategies and media

l Including management of quality-of-service
l Including object-level security services

l Be high-performance, including
l Support multiple information filtering strategies
l Support user-defined filtering criteria

l Support a wide variety of range-relevant platforms (HW/OS/compiler)
l Be technology neutral

TENA Middleware EDMS

TENA Common
Infrastructure

TENA
Repository

16

TENA Data Collection System
Purpose and Requirements

TENA Middleware EDMS

TENA Common
Infrastructure

TENA
Repository

l Beta data collection
system released

l Supports
l Collecting arbitrary Object Model information
l Contains data viewer
l Contains playback capability

l Currently works with MySQL and SQLite database systems
l Database schema follows

the structure of the object
model, with separate table
for each object and
message type

l Separate Data Collector
Application

l Export to Excel for viewing

l Playback application

17

TENA Provides Free GOTS LVC Tools
(Partial List)

l TENA Utilities—Making TENA easier to use
l TENA Repository (automated software building, community source code

collaboration)
l TENA Wiki (website collaboration for user groups)
l TENA Issue Tracking System (task tracking system for user groups)
l TENA Installer (cross platform software installation)
l MagicDraw Plugin (converts UML diagrams in object model TDL syntax)

l TENA Tools—Helping you conduct and manage your event
l TENA Middleware (C++, Java, .NET support for ~50 computer platforms)
l TENA Console and Canary (event management and network monitoring)
l DISGW (a TENA-to-DIS gateway).
l ClearPath (multicast network testing)
l TENA Data Collection System (collector, database export, and playback tools)
l Interface Verification Tool (Platform generator to support testing activities)
l Web Binding (provides JSON/REST http interface to TENA systems)
l RelayNode (bridges different communication domains)
l SIMDIS TENA Plugin (3D visualization and analysis support for TENA object

models)
l TENA Video Distribution System (various tools related to video/audio stream

support)
l Mission Information Resource Controller (automated configuration for distributed

systems)
l Network Communication Tools (chat, file transfer, etc.)

18

Other TENA Integration Methods:
Web Binding

l Web Binding is
automatically generated
based on object model

l Hub provides REST API
to web clients to
perform middleware
operations (e.g.,
subscribe to type
Vehicle and obtain
updates)

l TENA data sent to and
from the Hub uses
JSON encoding

19

Other TENA Integration Methods:
Relay Node

l RelayNode is used to
bridge two executions
that may have different
communication
characteristics

l For example, one network
segment may be for a low
data rate link and an
update would only need to
traverse that link once,
and then be replicated by
the RelayNode to multiple
subscribers

l Illustration shows a
typical scenario with a
single WAN execution
and multiple LAN
executions

20

Typical TENA
Execution

TENA Interoperability
Architecture Illustration

Gateway
Different
Protocols

RelayNode Different
Network

Characteristics
Web

Binding

Web
Applications

Adapter

Vendor
System

JSON, HTTP,
Thrift

RF Radio, Satellite

DIS, HLA

SNMP, TCP,
Proprietary

21

Summary of TENA/JMETC Capabilities

l A Working Implementation of the Architecture
l TENA Middleware currently works on Windows, Linux, and Sun
l TENA Repository filled with information, tools, and object models

l A Process to Develop and Expand the Architecture
l JMETC Users Group and AMT Meetings

l A Technical Strategy to Deploy the Architecture
l JMETC process brings interoperability and reuse to test ranges

l A Persistent Network to permanently connect test sites
l JMETC network enabled with TENA allows new tests to be performed

with much less lead time and expense compared to the past

An Architecture for Ranges, Facilities, and
Simulations to Interoperate, to be Reused, to be

Composed into greater capabilities

22

Contact Information

l Both TENA and JMETC provide free technical assistance
and training for any interested users. Contact information is
below.

l TENA Website: http://www.tena-sda.org

l TENA Feedback: feedback@tena-sda.org

l JMETC Website: http://www.jmetc.org

http://www.tena-sda.org
mailto:feedback@tena-sda.org
http://www.jmetc.org

Live-Virtual-Constructive
Interoperability

Future Techniques
Randy Saunders

2

28-Nov-18

Agenda

§ Why the future might be different
§ What the future might include
§ One Hypothetical

The Future ?

“Prediction is very difficult, especially if it’s about the future.”
-Niels Bohr

3

11/28/18

“The best way to predict the future is to invent it.”
- Alan Kay

§ The M&S community, as part of the greater software community,
is carried along by emerging trends.

§ Open Source Collaboration

§ Multi-Purpose Data Streams

§ Where might this lead?

Future Environment

4

11/28/18

Users

Applications .Visualization

Virtual/Constructive Live

Simulation Range

Virtual World Interface .

Shared Data Infrastructure

Who Really Cares?

All this is Off-The-Shelf to users.

One (Potentially Random) Hypothetical

5

11/28/18

HLA
Federate

TENA
Application

RTI BGCSI

Extensions

. Middle
. ware

CSI

Standard
API

DIS
Simulation

DIS
PDUs

. Gateway
to
DIS

CSI

Network

CTIA
Simulation

Extensions

. Middle
. ware

CSI

Standard
API

NET NET NET

§ Could an Open Source solution provide this sort of network?
§ DDS is an example that could.
§ Increasing use of DDS in the tactical community provides a reuse

opportunity PLUS integration into military networks.

. Service Provider

Cloud Computing, Simulation-as-a-Service,
…

6

11/28/18

Users

Applications .Visualization

Virtual/Constructive Live

Simulation Range

Simulation #1 Simulation #2 Simulation #n

Internet, Magic, Whatever …

Simulation in the Cloud

§ Economic factors favor data center consolidation, virtualization,
and cloud hosting for software solutions in general.

What about Simulation Interoperability?

§ DIS is a wire standard, based on multicast UDP
§ None of the major commercial cloud providers support this.

§ HLA and TENA are APIs, so the middleware vendor has to adopt
some new communication solution for a VM environment.
§ DDS (used in command and control) may be available, some day
§ Service Interfaces of some form are mandated

All paths are TBD at this point.

7

11/28/18

Conclusion: What’s the important Driver?

§ Top Issues (From Ed’s part of the intro):
§ Fair Fight

§ Terrain Correlation between different L/V/C sims when the sims interact with
each other

§ Integrating live sensor systems with simulated entities (e.g., ACES)
§ Integrating live and simulated C4I (messages, voice, video)

§ Software Connectivity
§ Time synchronization (NTP? GPS? HLA/TENA �Time Management�)
§ Bandwidth management (L/V/C interactions/messages within network limits)
§ Object Model and network transport protocol incompatibility

§ Hardware Connectivity
§ Bridging multiple security domains

§ None of these issues is Architecture-Specific.
§ Different architectures provide different, small, subsets of the solution.

§ Best-practice processes have been documented, including for multi-architecture
situations.
§ You should use them!

8

11/28/18

Questions

9

11/28/18

Randy Saunders
Johns Hopkins APL
+1.443.778.3861
Randy.Saunders@jhuapl.edu

Dr. Edward T. Powell
Ed Powell Consulting LLC
+1.703.587.8036
epowell@tena-sda.org

mailto:Randy.Saunders@jhuapl.edu

Integration Architecture
Advantages and Disadvantages

2

Outline

l Algorithm for picking the right architecture
l Just Kidding

l DIS – Distributed Interactive Simulation
l Pros and Cons

l HLA – High Level Architecture
l Pros and Cons

l TENA – Test/Training Enabling Architecture
l Pros and Cons

l Real Suggestions for Your Events

3

Algorithm for Picking the Right Architecture

Do you want
to work with

other
simulations?

No

Yes
Can you use
what they

already use?
Yes

No

“It Depends”
You’ll need to

examine all these
other factors

4

DIS Advantages

l DIS can be used on any operating system, no matter how small or large, no
matter how proprietary or embedded, how old or new.

l DIS software can be written in any computer language: C, C++, C#, Java,
FORTRAN, Lisp, Ada, etc.

l DIS software can run on any computer hardware platform, from the tiniest
embedded computer to the largest parallel supercomputer.

l The behavior of DIS packets on the wire is documented and well understood,
relatively simple, and easily diagnosable.

l DIS packets are very bandwidth efficient.

l DIS is an international standard with support throughout the world.

l DIS has an extensive "standard object model" with many thousands of man-
years of expertise behind it.

l When recovering from a network partition, the DIS "federation" is self-healing,
although data collected from the partition period is corrupt.

l DIS does not require any centralized processes to operate properly, simplifying
setup, testing, and operations.

l Software that implements the DIS standard is available in both commercial and
open-source forms.

5

DIS Disadvantages

l DIS fails silently

l Relatively long integration time required

l (Mostly) fixed object definitions - limited extensibility

l Limited meta-model (C-struct-like PDUs) and model of the battlefield (entities
and interactions between entities) is fixed.

l Dead reckoning giveth and dead reckoning taketh away

l Not optimized for WAN operations

l Paper standard - multiple interpretations likely, lots of code to write or acquire.

l Data definitions and data communication protocols are inextricably intertwined.

l Many mutually-incompatible extensions exist to meet operational needs beyond
what DIS defines.

l Certain modeling constructs (e.g., EntityType) are modeled in a difficult way
making it hard to change or work with.

l “My extensions to DIS are just fine; it’s YOUR extensions that are screwing up
the exercise!”

6

HLA Advantages (Part 1)

l Allows user-defined object models.

l Leverages the work done on DIS with a FOM based on DIS PDUs (RPR-FOM),

though use of this FOM is not required.

l Supports both persistent objects (“objects”) and messages (“interactions”)

l Provides tested RTI interchangeability without code changes in the members.

l Provides the most complete set of standardized simulation services.

l Provides architectural support for variable time/global event ordering.

l HLA-2010 provides architectural support for detecting and addressing
intermittent network upsets under software control without operator input

(however, these services are not necessarily implemented by any given RTI).

l Provides mechanisms for bandwidth optimization through variable rate updates
or data use subscription without the use of filters or bridges.

l HLA is an international standard.

l HLA software (RTIs) are available as commercial and open source packages.

l Many HLA-based tools and utilities are available either for sale or open source.

7

HLA Advantages (Part 2)

l Contains the capability to use a modularized FOM.

l Provides powerful interest management services between publishers and
subscribers.

l Provides the ability to migrate ownership of an object between simulations

l Allows users to choose between best effort (multicast) and point-to-point
reliable communication between federates on an object-class-by-object-class
basis.

l Implementations can be extremely high performance (low latency, high
throughput).

8

HLA Disadvantages

l Any given RTI works on only a limited set of Operating Systems/Compiler
combinations

l No standardized wire format; indeed, the wire format is vendor-dependent and
thus is completely opaque.

l RTIs from different vendors do not interoperate with one another.

l Meta-model (OMT) provides limited object composability.

l HLA objects are not “objects” in the object-oriented sense.

l Very complex API.

l No compiler-time error checking.

l Commercial RTIs may have substantial license costs.

l Most implementations require a centralized process of some sort to function.

l Architecture requires user-application marshaling and de-marshaling of data
(though some implementations provide this for users).

l Many RTI implementations do not work properly on unreliable networks.

9

TENA Advantages (Part 1)

l Government owned, available to everyone free of charge

l Allows user-defined object models

l A robust standard object model exists (though using it is not required). It is
not as extensive as DIS/RPR, but more relevant to the T&E range community.

l Includes robust auto-code generation capability that auto-generates federation-
wide marshaling/de-marshaling code, links object models directly with
application code, generates fully functional test applications, and provides users
with almost-completely-filled-out auto-generated starting points.

l Supports both persistent objects (“SDOs”) and messages (“messages”).

l Contains an extremely robust fully object-oriented meta-model with many
capabilities including object composition, distributed pointers, vectors,
enumerations, remote method invocations, etc.

l Allows the standardization of both the interface to, and the implementation of,
standard algorithms (local classes)

l Multiple standard spatial reference frames (SRFs—"coordinate systems”) are
built in to the standard TSPI object model, including seamless conversions
between each.

10

TENA Advantages (Part 2)

l Type-safe interface eliminates entire categories of programming errors

l Allows users to choose between best effort (multicast) and point-to-point
reliable communication between federates on an object-by-object basis.

l The Middleware is extremely high performance (low latency, high throughput).
l Supports an industry-wide reuse repository for object models, source code, and

documentation.

l Many reusable tools and utilities exist for TENA, all free, including those for
exercise management, data collection, and object-model management.

l Guarantees that users in a federation are using the identical object model
definitions, and where appropriate, implementations.

l Numerous government information assurance approvals exist for the TENA
software

l A commercial TENA-based cross-domain solution exists from secret to
unclassified.

l TENA is actively supported with DoD funding for evolution and maintenance.

11

TENA Disadvantages

l Middleware works on only a limited set of Operating Systems/Compiler
combinations.

l No standardized wire format (though a Wireshark plug-in does exist to give
users some transparency in what is being transmitted).

l No ability to globally order events (i.e., does not support “HLA Time
Management”) or transfer of ownership of objects.

l Not an international (commercial) standard (but a government standard).

l The Middleware API requires object-oriented thinking by users (a disadvantage
only to those users who think functionally).

l Limited tools exist for defining/deploying an event (except for OM tools).
l Software is not available as open source.

l Limited capability to function on unreliable networks.

12

Lessons for Your Events

l Use the most capable interoperability architecture
when judged by your own requirements

l Use multiple architectures connected with gateways
only when that is the most cost-effective solution, and
the use of the gateways will not compromise your
event

l Remember that interoperability architectures only
solve half the battle. Smart event design and
knowledge of distributed communication issues are
still required.

	IITSEC 2018 Live –Virtual-Constructive (LVC) Interoperability Techniques PART 1 of 7
	IITSEC 2018 Live –Virtual-Constructive (LVC) Interoperability Techniques PART 2 of 7
	IITSEC 2018 Live –Virtual-Constructive (LVC) Interoperability Techniques PART 3 of 7
	IITSEC 2018 Live –Virtual-Constructive (LVC) Interoperability Techniques PART 4 of 7
	IITSEC 2018 Live –Virtual-Constructive (LVC) Interoperability Techniques PART 5 of 7
	IITSEC 2018 Live –Virtual-Constructive (LVC) Interoperability Techniques PART 6 of 7
	IITSEC 2018 Live –Virtual-Constructive (LVC) Interoperability Techniques PART 7 of 7

