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ABSTRACT 

The paper discusses alternative ways to think about the modeling endeavor; the importance of including qualitative 
factors (i.e., “soft factors”) despite critics who think doing so reduces rigor; the fundamental necessity of worrying 
seriously about uncertainty from the outset, including the kinds of uncertainty present in complex adaptive systems; 
and about implications for design of models. The paper’s admonitions would be straightforward except that they fly 
in the face of common organizational practice, which is to avoid soft factors, ignore uncertainty by obsessing on 
standard cases, and use models ill-designed for serious uncertainty analysis.  
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INTRODUCTION

This paper comments on some paradigm-level issues 
that have: appeared recurrently over the years; been 
affected by historical developments; have caused me to 
ponder and adapt; and remain salient today. The issues 
are 

� How should we think about models? What are 
models supposed to be? 

� What do we do about the soft and squishy aspects 
of the world? About the world of complex 
adaptive systems? And, most generally, about 
uncertainty when it’s more than just an annoyance 
on the margin? 

� What about designing models? Should we proceed 
bottom-up, top-down, or how? 

Let me address each in turn. 

HOW SHOULD WE THINK ABOUT MODELS? 

The very conception of “model” varies drastically 
within and across communities (e.g., those concerned 
with force planning, acquisition, operations, and 
training). Let me contrast two views. 

Models as Tools

To some, models are essentially tools. The application 
(e.g., analysis) is central and models should be assessed 
for their usefulness in accomplishing what is needed 
for the problem at hand. They need not be more 
accurate, precise, instructive, or comprehensive than 
necessary for the context. A procedural checklist is a 
kind of model; an empirical plot showing the cost of an 
aircraft as a function of its weight and technological 
generation is another. So also is an attrition-based 
warfare model used to assess the adequacy of a future 
force structure by calculating whether, in the 
mechanistic attrition battle envisioned by the model, 
the force in question would fare poorly or well against 
some defined adversary force. I use this last example 
because related models have played a big role in DoD’s 

work even though the more thoughtful users of the 
models have often made clear that they did not see a 
close link to reality, often quoting George Box to the 
effect that (Box, 1979). 

All models are wrong but some are useful. 

This models-as-tools viewpoint arises also in exercises. 
One of the important “aha” moments for those 
involved in relatively high-level exercises is sometimes 
“Oh, the models don’t have to be right; they merely 
need to assure that the consequences of actions are in 
the right direction so as to keep the flow going usefully 
and achieve the intent of the training.” 

Another version of the models-as-tools theme comes 
when economists, statisticians, and operations 
researchers among others see models as data-driven 
prediction-generators, i.e., as black boxes that generate 
predictions based on available inputs. They may not 
care whether the structural character of the models 
relates well to the phenomena of interest; rather, they 
care about predictive value. The model itself may be 
nothing more than some regression structure. When a 
statistician uses the term “explain,” as in “X explains 
25% of the effect observed,” he is saying nothing about 
the physical world. Rather, he is saying merely that the 
X term in a linear regression accounts for 25% of the 
overall variance. Despite their dubious basis in 
phenomenology, empirical models can be very, very 
useful (Davis, 2009). Indeed, the model-as-tool 
paradigm has a strong base in experience. 

Models as Representations of Knowledge

Scientists often look at models differently. They see 
many models as idealizations that record and organize 
insight about the actual world. A classic example is the 
ideal gas law, PV=NkT. This law is not general, since 
actual gas molecules have volume, which means that 
the exact law has correction terms except in limiting 
conditions. However, the ideal gas law expresses 
relationships among pressure, temperature, and volume 
meaningfully. Further, it can be derived coherently 
from fundamental laws of physics. All of this means 
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that we “understand” the law. The model, then, may be 
a tool, but it’s surely not a mere tool. It conveys 
knowledge. 

Are models necessary to convey knowledge? When 
dealing with simple phenomena, a well-written essay 
can suffice. For somewhat more complicated 
knowledge we need mathematics, taxonomies, courses, 
and text books. These rely heavily on models that are 
idealizations such as homogeneous systems, linear 
systems, and point masses. Essays don’t suffice. 

This, however, is not where the story ends. Scientists, 
after all, aspire to understand everything knowable 
about our world.  What happens when we are dealing 
with even more complicated systems? There are at 
least three paths worth distinguishing: 

� Representing our knowledge in combinations of 
equations, diagrams, and even pseudo code, 
treating computer programs as technical 
implementations.  

� Building computer models that represent our 
various types of knowledge,  treating these models 
to some degree as surrogates for reality. 

� Building computational models that reflect 
concepts that can be described relatively simply, 
but that manifest themselves in ways perhaps best 
understood by viewing results of computational 
experiments (simulations). 

The first of these paths appeals to theorists. A 
computer program is seen rather like a machine doing 
the nitty gritty work of calculation, but the essence of 
knowledge is in the higher level representations. 
Consider Maxwell’s equations, Liouville equations, or 
Feynman diagrams in physics, or the diagrams and 
interface specifications used by system engineers.   

To illustrate the second path, consider someone using 
M&S to represent a real-world physical system as 
closely as possible. This might be someone involved in 
both command and control and, e.g., fleet exercises or 
mission rehearsals. Such a person uses the same 
displays to show outputs from simulation on the one 
hand, or from sensor data from real ongoing operations 
on the other. In an exercise, identical moving objects 
on a display may be real while others are simulated; it 
may or may not be possible to tell the difference. As an 
different, early example, consider that the mechanized 
forces going into battle in Desert Storm were seeing 
what they had “seen” and experienced in their live, 
virtual, and constructive simulations in peacetime (see 
the Battle of 77 Easting discussed in Neyland, 1997).  

The third path is being pursued by many who are using 

agent-based modeling, some with their intentions 
candidly expressed in titles such as artificial life or 
artificial societies (Epstein and Axtell, 1996). It has 
also been pursued in remarkable and provocative ways 
by some, such as Stephen Wolfram, in his New Kind of 
Science (Wolfram, 2002). 

All three of these paths, and others I have not thought 
to list, are clearly different from paths in which models 
are treated as mere tools. 

Tools or Knowledge Base?

The reason for this section of the paper is that it seems 
to me useful to be explicitly aware of the tension 
between ways of thinking about models. We are wise 
to avoid joining one tribe or another, and to instead 
recognize that models can be seen in different ways 
and approached in different ways. Nonetheless, I would 
like to reinforce the following points before proceeding 
with the rest of the paper: 

� Models are the primary means by which we record 
and communicate our deepest knowledge of 
complicated and complex systems.  

� Robot-building and computational experiments 
with generative models are crucial new 
mechanisms for learning about complex systems, 
both artificial systems and, quite likely, real 
systems. 

Yes, some models are just tools, but others are 
something more. They are not reality, but the 
distinctions are shrinking. This can be disquieting, as 
when we use describe model processing in human 
terms: the robot must “assess the situation, consider 
options, and choose among them, having learned from 
experience.”  Or consider the comments of biologist 
Richard Dawkins in his book about evolution science 
(Dawkins, 1996, p.59) 

Nothing in my biologist's intuition, nothing in my 
20 years' experience of programming computers, 
and nothing in my wildest dreams prepared me for 
what emerged on the screen.... With a wild 
surmise, I began to breed, generation after 
generation, from whichever child looked most like 
an insect. My incredulity grew in parallel with the 
evolving resemblance.... I still cannot conceal from 
you my feeling of exultation as I first watched 
these exquisite creatures emerging before my eyes. 
I distinctly heard the triumphal opening chords of 
Also sprach Zarathustra (the ‘2001 theme') in my 
mind.
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SOFT FACTORS, UNCERTAINTY, AND 
COMPLEXITY 

Soft Factors 

I would like next to talk about three challenges that 
make modeling of the real world very difficult. First, 
we have the problem of soft (or “squishy”) factors 
(variables). It might be nice if all the variables that 
mattered could be precisely defined and measured, but 
what do we do with such variables as: team quality; 
leadership quality; determination; loyalty (to family, 
friends, group, nation, religion,...); respect;  trust...; 
distrust; and love/hate,...If models are intended to 
describe aspects of the real world, then these must be 
part of the models.  

This might seem unexceptionable, but a classic view of 
both analysts and modelers in operations research, 
systems analysis, physics, and engineering has long 
been that the variables of the model should be 
observable and quantitative so as to be rigorous. It has 
often been claimed that if we can’t measure a variable 
quantitatively, we don’t know what we’re talking 
about. For this and other reasons, the Department of 
Defense favored a style of M&S throughout the cold 
war. The resulting models were good at dealing with 
“hard,” quantitative matters such as the number of 
tanks, their range and firing rate, and their 
vulnerability. For the most part, however, they ignored 
soft factors despite their criticality in actual wars. This 
could be rationalized for strategic planning because 
using such models imposed a kind of discipline and 
built in certain desirable aspects of conservatism. There 
are arguments on both sides of this matter, but if we 
turn to asking not about force-structure planning but 
rather at-the-time military balances or war prospects, 
no one except mathematicians would ignore the 
qualitative considerations. Did the British give up the 
Falklands when challenged? Did the Israelis 
preemptively surrender to the Arabs in the early 1970s? 
Is not the hearts-and-minds theme of modern 
insurgency doctrine quintessentially “soft?” and 
therefore ignorable? 

My point here is that the omission of qualitative 
considerations from DoD’s modeling and simulation 
has long been an outrage to those of us who believe 
that models should be “serious,” not mere tools. A 
colleague and I expressed our views on this matter two 
decades ago in a paper that caused remarkably negative 
reactions from some, but was applauded by others 
(Davis and Blumenthal, 1991). Our observations  
mirrored the empirical observations of the late military 
historian Trevor Dupuy (Dupuy, 1987).  

A chronic bugaboo stemmed from the myth that soft 

variables should and could be ignored, in part for the 
sake of conservatism. The reality is that to ignore such 
a variable is equivalent to assuming in the model that it 
has zero value (or a value of 1 if it appears as a 
multiplier) (Forrester, 1969). That, of course, is 
patently ridiculous for many of the factors. Nor is the 
assumption “conservative;” it’s just wrong. As soon as 
one realizes the folly of ignoring “soft” variables, one 
can quickly accommodate to the necessity of 
estimating their effects from history and other 
experience, or of exploring the consequences of their 
having different values. Often, such factors can be 
game-changers, such as factor-of-two effects in an 
otherwise close-call situation. They are ignored at our 
peril. 

Complexity

Let us distinguish here between “complicated” and 
“complex.” System engineers routinely deal with 
highly complicated systems such as aircraft that have 
numerous components and subcomponents.  
“Complexity,” however, is different.  I am using the 
term here in the sense of complex adaptive systems 
(CAS), which is still a relatively new domain of study 
even though much discussed or nearly two decades, 
particularly since an exciting era of work at the Santa 
Fe Institute (Waldrop, 1992; Holland and Mimaugh, 
1996; for a text, Bar-Yam, 2005). The need to embrace 
the basic concepts of CAS theory in defense M&S was 
highlghted in a recent national-academy report 
(National Research Council, 2006). 

The usual concept of a CAS is of a system with a large 
number of interacting entities (usually called agents) 
that change behaviors as their environment changes. 
The changes may be governed by remarkably simple 
rules or by something richer. A defining characteristic 
of CAS is that they exhibit so-called emergent 
properties, properties of the aggregate that are not 
obvious from an understanding of the elements. If a 
crowd turns into a mob, the “mob” has emerged. All 
nontrivial social systems are complex adaptive 
systems. Think of social movements, rebellions, or 
even the phenomenon of a coherent theme “emerging” 
in the final week of an intensive summer study, after 
weeks of cacophony. 

Such phenomena matter greatly in today’s national-
security work dealing with subjects such as terrorism, 
counterterrrorism, and stability operations. These 
subjects are inherently human-centric and we find 
ourselves talking about the hearts and minds of the 
people, or cases in which “the people turn” against the 
violent extremists. The Jihadis, in contrast, believe that 
they are the vanguard of a movement. 
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Uncertainty

The existence of soft factors and the need to embrace 
the CAS paradigm further enhance the need to see 
uncertainty as at the very core of good modeling and 
analysis.  This has been a bitter pill of all for many to 
accept. Life would be so much simpler, or so it would 
seem, if we could build models of this and that, make 
predictions, make good choices, and carry on.  In truth, 
we might not like that world better than the one we’re 
in, but in any case we live in a world in which a great 
deal is uncertain, predictions are often not worth the 
electrons expended to represent them, and choices are 
often impossible to make with confidence. 

A serious and especially enjoyable rendition of this 
view is that of Nassim Talib’s book, the Black Swan 
(Taleb, 2007), but authors (including me) have 
struggled with the same issues for many years (Davis, 
1994, 2002). Our diagnoses have been similar, but our 
prescriptions have been different  My own approach 
has been to champion various ways of planning under 
uncertainty, such as so-called capabilities-based 
planning, or what I describe in long form as planning 
for flexibility, adaptiveness, and robustness (Davis, 
2002).  Flexibility, in this context, means the ability to 
take on other-than-expected missions and tasks, or to 
drastically adjust objectives. Adaptiveness refers to the 
ability to cope with other-than-expected circumstances, 
which may require changing tactics, mechanisms, and 
so on. Robustness refers to the ability to withstand and 
recover from disruptive events (usually adverse, but 
opportunity-presenting as well). The forces that 
invaded Iraq in 2003 were highly adaptive, as 
evidenced by the numerous adjustments made before 
and during the combat phase. However, neither the 
plans nor the forces were flexible enough to deal with 
the insurgency when it erupted. Shifting to a non-
military example, the oil industry displayed an absence 
of robustness when the Gulf oil-spill disaster occurred 
earlier this year. The disaster was not merely the result 
of an erroneous calculation somewhere, or bad luck, 
but a failure to assure robustness. 

Suppose that we accept the ubiquity and dominating 
significance of uncertainty.  What implications does 
this have for modeling and simulation? 

In my own work I have sought to structure the issues 
by distinguishing between structural and parametric 
uncertainty. That is, we may be unsure about how to 
build (i.e., to structure) a model so that it will correctly 
represent the phenomenon.  Even if we do, there may 
be numerous uncertain parameters in the resulting 
model. Let me discuss each of these, but in reverse 
order.

Parametric Uncertainty

Given a reasonably correct structure of a model, we 
may still find ourselves faced with uncertainty that is 
both broad and deep. This is reflected in “input data” 
(parameters) of the model. We can proceed with “best 
estimate” values of the parameters, but that can be an 
analytic atrocity if uncertainties are profound (as they 
usually are in strategic planning).  

To illustrate, consider that for many years, the 
canonical approach to defense planning was based on 
specific point scenarios.  Despite policymakers 
referring to them as merely illustrative, their 
organizations interpreted the scenarios as expressions 
of necessary and sufficient conditions, i.e., of 
“requirements.” Complicated models were constructed, 
massive data bases assembled and blessed, and cases 
run so as to inform decisions about what to buy and 
how much was enough—based on those point 
scenarios. Even a cursory look at the analysis, 
however, would quickly demonstrate that the single 
planning scenario was neither a meaningful best 
estimate nor a prudent worse-than-expected case. It 
was just a case decided upon by a well-meaning 
committee. Such planning systematically buried 
numerous profound uncertainties about how conflicts 
would arise, the warning time that would be available, 
the adversary’s strategy, operational objectives, and so 
on.    

So what?  The following illustrate some follies over the 
decades, all of which resulted from failing to consider a 
broader range of possibilities. All of the examples 
remain vivid from my personal experiences both inside 
and outside of government.  

1. 1978-1980. Many analysts using normal scenarios 
and models recommended eliminating light 
divisions because mechanized divisions were more 
cost-effective in simulated Central Region 
conflicts.  

2. 1980s. Analysts (and organizations) dealing with 
the Persian Gulf focused so exclusively on the 
Soviet threat as to be unprepared for the far more 
credible threat from Iraq. The United States was 
still in the relatively early stages of reorienting its 
thinking to the Iraqi problem when Saddam 
invaded Kuwait in 1990.   

3. 1980s. Planning focused so much on major 
regional conflicts as to leave the U.S. and NATO 
with v little capability for crises such as arose in 
the Balkans in the 1990s. What could we do to 
“stop the killing?” The only answer, it seemed, 
was massive bombing—not exactly an 
advertisement for U.S. inventiveness and subtlety.   
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4. Mid 1990s. Despite the breakthroughs in 
technology and demonstrations of capability in 
both field tests and certain battles of the 1991 war, 
there was great resistance to adjusting scenarios or 
models to exploit the revolutionary lethality of air 
power.  

5. Late1990s. Despite what might have been the 
lessons of 1990, planning scenarios in the 1990s 
continued to assume substantial actionable 
warning before the start of conflict in the event of 
a second war with Iraq. Further, the focus was 
almost exclusively on defense. 

6. Turn of the Century. The table turned, air power 
enthusiasts focused attention on scenarios in which 
air power could indeed be decisive, but 
downplayed other cases in which adversaries did 
not cooperate. 

In the late 1990s thinking about planning began to 
change and in 2001 Secretary of Defense Donald 
Rumsfield introduced capabilities-based planing. 
Resistance continued, however.  It was claimed that it 
was too difficult to build multiple data bases and 
models for diverse kinds of conflict in diverse 
circumstances. Thus, much of the canonical work 
continued to focus on the convenient big-war point 
scenarios. . 

After 9/11, of course, everything changed.  Except that 
it didn’t.  Modeling and analysis continued to focus 
unduly on big wars of a standard variety. By the mid 
1990s (i.e., the 2006 Quadrennial Review), senior 
policymakers had lost patience. They dramatized this 
with a famous “quad chart” contrasting traditional, 
irregular, disruptive, and catastrophic warfare.  

In recent years the DoD analytic community has done 
much to rethink its work and diversify its approaches. 
Much of this has occurred within the activity referred 
to as the Analytic Agenda, which now includes a rich 
set of challenge cases and numerous analytic 
approaches that range from traditional campaign 
modeling to human war gaming and use of simple 
conceptual models to represent social science, as 
discussed below. There has been distinct progress, but 
uncertainty analysis is still resisted—especially by 
organizational behavior. The most recent Quadrennial 
Defense Review (2010) does better, examining what it 
hoped was a “spanning set” of scenarios to test 
proposed force structures in different ways (see also 
Davis, Shaver, and Beck, 2008, which illustrates this in 
the context of global-strike options).  

Structural Uncertainty

The above discussion imagined that we had a correct 

model, just uncertainty about input values. Structural 
uncertainty is worse.  It can be paralyzing and it most 
cases it is simply essential to buckle down and do the 
research necessary to understand the phenomenon (or, 
failing that, to collect so much data as to be able to put 
together a reliable empirical model).  In some cases, 
however, such as imagining future military conflicts, 
future terrorist attacks, or even future natural disasters, 
there are limits to what can be accomplished.  What 
then?  Further, when dealing with the challenges of 
irregular warfare, it quickly becomes clear that 
mathematical models are not a natural way to proceed 
when attempting to inform people-centric strategy.  
What, then, does one do? 

Some suggestions for this difficult challenge are as 
follows: 

1. Possibility Space. Use human gaming and 
comparably open-minded versions of M&S to 
understand the possibility space.  I mention human 
gaming because humans are still better than 
machines alone for finding the plausible tactics of 
an intelligent adversary, imagining the ways things 
could go wrong, and conceiving creative solutions 
(including “cheating”). This is no longer a clear-
cut matter, however, and well-conceived 
computational experiments can also help greatly in 
opening minds.  Merely as one example, my 
colleagues and I did a study in which we built on 
results of a human brain-storming exercise, 
constructed a simulation to generate possible 
scenarios reflecting notions of that exercise, and i 
allowed for influences to have a random 
component so that certain events and actions 
would sometimes have opposite-than-expected 
effects (sound familiar from the real world)?  We 
then generated a massive number of possible 
futures, not for the sake of the numbers, but to 
explore more comprehensively so as to recognize 
possibility patterns that might be both important 
for planning but ordinarily ignored. Thus, this 
work was in the realm of divergent, imagination-
improving thinking (Davis, Bankes, and Egner, 
2007). My own conclusion at the end was that 
most of the substantive possibilities had been 
foreseen by creative analysts, but that a valuable 
few had become visible as the result of the 
computational experiments. Similarly, in a more 
hard-core analytic study of options for global 
strike my colleagues and I developed a 
computational approach for generating options 
“mindlessly” and discovered, to our chagrin, that 
we had missed some important options when 
relying only on our allegedly sound but creative 
thinking (Davis, Shave, Gvineria, and Beck, 2008; 
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Davis et al, 2008). 

2. Alternative Models.  A very different example of 
dealing with structural uncertainty is constructing 
alternative models of the same phenomenon so as 
to open our minds. The example I will use here 
involves alternative models of the adversary. 
Historically, major failures in foreign policy have 
come about because of a failure to understand the 
adversary’s mindset. Sometimes the adversary has 
been perceived as far more evil, reckless and 
determined than was the case; other times, 
intentions and determination have been 
underestimated.  The problem, in my view, is the 
tyranny of the best estimate. In 1990, for example, 
U.S. intelligence was so confident about its 
perception of Saddam as to altogether discount the 
possibility of his invading Kuwait.  What can be 
done?  In the case of Saddam, a colleague and I 
constructed alternative “Saddam” models, one of 
which turned out to be prescient, not only with 
respect to the invasion, but also to Saddam’s 
subsequent behavior. Our purpose was not to get it 
“right,” but rather to encourage well-hedged 
strategy formulation. That basic concept continues 
to be sound and, in my view, should become part 
of doctrine. This is very different, by the way, than 
what comes out of minimax thinking in game 
theory. It is a matter of identifying different 
mindsets, patterns of reasoning, and consequences 
for hedging (Davis, Kulick, and Egner, 2005; 
Davis, 2010). A core concept here is that by 
opening the mind to more than one possibility, the 
floodgates open to imagination and recognizing 
the need for hedging and potential adaptation. 

3. Conceptual Models. Over the last two years, my 
colleagues and I have done a good deal of work on 
constructing relatively coherent integrations of the 
social science knowledge relevant to 
counterterrorism and, more recently, stability 
operations. Here we have assiduously avoided 
building sophisticated computer models. Instead, 
we have put the most emphasis on developing 
simple diagrammatic representations of the factors 
at work.  Called “factor trees,” these can be 
regarded as simplified influence diagrams in 
disguise (see Figure 1). Their nature, however, is 
such as to maximize the ability to communicate 
and debate issues, and to identify major strands of 
causality that can be used to inform everything 
from intelligence collection to operational 
planning (Davis and Cragin, 2009). We did not 
attempt to specify the structure, but only to 
coherently describe the factors at work. 

Hedging, not Narrowing.  Why does all this matter? 
Well, suppose that we are studying irregular warfare.  
The intent should not be to look at the vast array of 
notions, speculations, and parochial “theories,” and to 
then down-select to the most favored (a suggestion that 
I have heard offered up seriously). If the model is to 
represent our knowledge, then it will need to reflect a 
diversity of cause-effect relationships rather than 
merely those of some committee’s “best estimate.” 
Why?  Because, depending on circumstances, different 
factors and processes will dominate what happens; in 
any one circumstance, there might well be a great 
simplification possible, but that simplification will be 
quite different for another circumstance. To be less 
abstract, consider the role of religion. Sometimes, 
religion is a causal factor in terrorism; sometimes it is a 
result of becoming an extremist, a part of 
indoctrination; sometimes, it plays no role at all. 
Similarly, financial incentives may be dominant when 
urban youths are paid to lay IEDs, but they are often 
not at all relevant to religiously committed Jihadis. 
Strategy, then, must allow local tailoring of tactics to 
fit the situation.  

DESIGN IN M&S 

The last topic I intend to discuss, albeit briefly, is 
design.  Some of those involved with M&S think and 
operate top-down; others are bottom-up in inclination.  
Who is right?  This issue is ultimately one of those 
paradigm-level disputes that will go on forever—not 
only because people have different predilections and 
skills, but because there are conflicting considerations.  

The answer to “who is right? is, of course, “neither.”  
Let me make the following observations, however 
(Davis and Bigelow, 1998; Davis, 2002): 

� Strategic planners need high-level structures with 
relatively few variables. They need to be able to 
see the whole and to be able to reason coherently 
with relatively few variables. Because of the 
uncertainties mentioned above, they also need to 
be able to ask numerous what-if questions, and to 
explore the consequences of many different 
assumptions. All of this calls for low-resolution 
models and exploratory analysis (Davis, 2002). 

� System engineers and commanders also have such 
needs. Thus, the virtues of relatively simple low-
resolution models and exploratory analysis apply 
across such categories as strategic planning, 
acquisition, training and operations, and personnel 
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Figure 1.  An Illustrative Factor Tree 

The real world, however, is truly complex. Details 
matter. Indeed, many seemingly compelling top-level 
structures prove wrong.  Further, evaluating the high-
level variables can depend on very detailed work. 
Efforts to oversimplify will almost necessarily 
eliminate the ability to represent our full knowledge.  

These observations suggest a top-down approach with 
drill-down capability (Davis and Dreyer, 2009). That 
may seem to relate more to viewing results than to 
designing models, but in fact it has major implications 
for design  If the questions to be answered involve 
high-level variables, and if exploring the consequences 
of uncertainty is important, then it is very difficult for 
modelers to respond well unless their models are 
designed accordingly. Unfortunately, what that means 
is by no means straightforward. A basic problem is that 
when one examines systems in any detail, one begins 
to see that “everything is connected to everything.”  
That is somewhat of an exaggeration, but it doesn’t feel 
that way when one is in the middle of the modeling. 
Further, it often seems that “everything matters.”  

There is no perfect solution to these problems, but my 
own conclusion, reinforced over the years, is that we 
need to teach, think, and design routinely with multiple 
levels of resolution in mind. Further, we need to 
understand that knowledge comes not just bottom up 
(the conceit of many simulationists, nor top down (the 

goofy notion of those who sit at the top), but in all 
directions (Figure 2, adapted from an earlier study 
(National Research Council, 1997)).  Our aspiration 
should be to have a set of models that, taken together, 
allow us to represent all of our knowledge in a self-
consistent way, and to apply it in a diversity of ways 
that require different levels of detail and, often, 
different perspectives .  

In many cases, it is possible to design an individual 
model to have multiresolution features, by which I 
mean the option to enter the problem (i.e., enter the 
inputs) at alternative levels of detail.  Sometimes, this 
can even be done rigorously, but more often it will 
depend upon approximations.   

When dealing with larger systems, designing an entire 
model with multiresolution capability is difficult or 
impractical. It then becomes desirable to think in terms 
of model families. A low-resolution member may be 
designed from a good but aggregate-level conception 
of the problem, or it may be what I call a “motivated 
metamodel,” a model that has some core structure 
suggested by an aggregate-level concept, but with 
numerous potential correction factors.  The motivated 
metamodel can, in some cases, be tuned to agree with 
results from computational experiments with a more 
detailed model, or with results from physical-world 
experimentation.  This approach is quite different from 
normal statistical modeling, which may reject with 
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prejudice any a priori notion of model structure. It is, 
however, a more fruitful form of inquiry in my opinion, 
especially for scientists (a point also made in .Box, 
Hunter, and Hunter, 2005). Once one gets into the 
spirit of having a family of models, it follows rather 
easily than one actually needs a family of tools that 
include man-machine simulations, human war gaming, 
and historical analysis among other things. This 
paradigm is to be recommended for analytic 
organizations, as discussed in a national academy 
report for the Navy (National Research Council, 2005). 

As a final observation on the matter of design and 
issues of top-down versus bottom-up,  I would like to 
emphasize that the very terminology is terribly 
confused and, in some ways updated.  To illustrate this, 
I note that the Nobel physicist Murray Gel Mann 
correctly describes agent-based modeling in the study 
of artificial life as top-d-wn, whereas most others think 
of it as bottom-up (Gell Mann 1994; 
http://edge.org/documents/ThirdCulture/zc-
Ch.19.html).’ 

 

 

Figure 2.  
Old and New Paradigms for Knowledge Flow 

Similarly, many people think of the protocol that 
enabled growth of the internet as a bottom-up 
phenomenon, but it might instead be seen as a highly 
enlightened top-down requirement. Similarly, in the 
realm of network-centric operations we find 
ourselves seeking organizational structures and 
behaviors that have a great deal of distribution and 
decentralization, but those structures and the 
incentives that cause the behaviors may be top-down 
directed! The point, then, that when designing 
systems or M&S in the modern world, we need to be 
seeing things with a mix of top-down, bottom-up, and 
sideways perspectives, and to use the terminology in 
ways very different from in earlier years. 
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